
Sciences & Société
Soutenance de thèse : Lionel DARUL
Étude du comportement thermomécanique des roulements à billes faiblement chargés
Doctorant : Lionel DARUL
Laboratoire INSA : LaMCoS
École doctorale :ED162 : MEGA de Lyon (Mécanique, Energétique, Génie civil, Acoustique)
Les roulements entraînent des pertes de puissance non négligeables. La chaleur générée se dissipe dans les différents éléments du système et impacte à nouveau les pertes de puissance. Ce couplage, entre pertes et thermique, doit donc être pris en compte afin d’avoir une prédiction satisfaisante du comportement du roulement. Cette étude s’intéresse à des conditions de fonctionnement particulières : vitesse de rotation modérée (produit N.d_m<10^6), charge appliquée faible (<5% de la charge statique du roulement) et lubrification par injection de faibles débits d’huile (≤15L/h ). Pour ces conditions, les travaux menés dans la littérature ne permettent pas une estimation et une compréhension satisfaisante du comportement thermomécanique du roulement.
Ces travaux de thèse développent un nouveau modèle thermomécanique de roulement à billes. La thermique est modélisée à l’aide de la méthodologie des réseaux thermiques. Les pertes de puissances sont modélisées à partir de considérations tribologiques. Les modèles développés sont comparés à des mesures expérimentales, réalisées sur un banc d’essai dédié. Ce dernier permet de mesurer le couple de pertes généré par un roulement, tout en contrôlant un certain nombre de paramètres (vitesse, débit, charge). Les températures des bagues du roulement sont également mesurées, afin de maîtriser le comportement thermique.
Il résulte de cette étude que, pour les conditions étudiées, les pertes de puissance dans les roulements à billes sont principalement dues à un phénomène de roulement hydrodynamique. La compréhension de ce phénomène permet notamment d’expliquer l’origine des pertes de puissance indépendantes de la charge, telles que définies dans le modèle de Harris. Concernant la thermique du roulement, l’étude met en avant l’importance de la température des billes, notamment sur les phases de démarrage. En conclusion, le modèle développé permet une prédiction des pertes de puissance à 5% d’erreur et une prédiction des températures des éléments du roulement à ±1-2°C.
Informations complémentaires
-
Amphithéâtre LI008, ECAM (Lyon)
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Kévin DAIGNE
Shear-induced diffusion of road minerals within the tire tread: a solid flow modeling using a soft multibody approach
Doctorant : Kévin DAIGNE
Laboratoire : LaMCoS
École doctorale : ED162 MEGA
Il peut être observé par des coupes longitudinales d'une bande de roulement que les minéraux de la route pénètrent à l'intérieur du pneumatique. L'objectif de ce travail est, pour une configuration expérimentale de référence, d'étudier expérimentalement et numériquement le processus menant à cette pénétration. Un modèle numérique pour étudier la pénétration des minéraux a été réalisé. Il consiste à cisailler une couche de minéraux déposée sur la surface d'un matériau composé de caoutchouc, modélisé comme un ensemble de corps discrets et déformables. Il a tout d'abord été montré que les phénomènes initiaux de pénétration des minéraux dans la matière, sont différents de ceux observés à plus long terme. Notamment, trois modes de pénétration ont pu être définis, que sont le labourage, l'abrasion et la fracturation. Ces modes modifient la vitesse à laquelle les minéraux pénètrent à l'intérieur du matériau. Lorsque les minéraux sont suffisamment incorporés au matériau, ils forment ce qui sera appelé une couche mixée. Les minéraux migrent de plus en plus profondément, du fait de contacts répétés entre agglomérats de minéraux, causés par leurs vitesses relatives (pilotées par le taux de cisaillement). Il est notamment montré que ces contacts conduisent à une évolution stochastique de la position d'un minéral. Si l'ensemble des minéraux est considéré, le comportement devient déterministe et suit une évolution proche de ce qui est attendu pour un processus diffusif. Ce dernier point permet ainsi d'utiliser les outils de la diffusion, notamment d'évaluer un coefficient de diffusion via la fluctuation de vitesse transverse et sa persistance. Il est ainsi montré que ces deux paramètres dépendent fortement de phénomènes plastiques locaux, qui dans le modèle actuel sont pilotés par la cohésion.
Informations complémentaires
-
Amphithéâtre Marc Seguin (Villeurbanne).
Mots clés
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Marjolaine GONON
A new approach of lubricant behavior in highly loaded contact
Doctorante : Marjolaine GONON
Laboratoire INSA : LaMCos
Ecole doctorale : ED162 : Mécanique, Energétique, Génie Civil, Acoustique de Lyon
This doctoral research focuses on lubricants behavior in highly loaded lubricated contacts (pressure > 1 GPa), or EHD (elastohydrodynamic) contacts, a vital aspect of engineering and industry. Under such high load, the friction coefficient (= tangential force/normal load) measured in these contacts may display a plateau regime at medium to high sliding velocities of the solid surfaces. It means that the macroscopic average shear stress becomes shear rate independent, associated in the literature to the lubricant Limiting Shear Stress (LSS)]. Previous work provided on molecular dynamic simulations revealed homogeneous and linear lubricant velocity profiles across the lubricant film thickness, even in the friction plateau regime, with no sliding at the walls. This implies that the friction plateau should result from an intrinsic property of the lubricant, reminiscent of the lubricant glass transition scenario. The present study investigates three model fluids: squalane, benzyl benzoate, and glycerol. Those fluids have been characterized in a high- pressure diamond anvil cell and a rheometer, both combined to two Brillouin light scattering spectroscopy set-ups. The results obtained from the new VIPA rig have been compared to those from TFP-1 and the literature. The results from high-pressure experiments have been compared to friction measurements previously conducted on squalane and benzyl benzoate. The study shows a correlation between the glass transition of these fluids and the onset of the friction plateau in EHD contacts. This research advances our understanding on friction in highly loaded lubricated contacts and highlights the importance of considering local dynamics when studying complex fluids under extreme conditions.These insights have the potential to improve lubricant development and to address friction-related challenges in engineering and industry.
Informations complémentaires
-
Amphithéâtre du CNRS (Villeurbanne)
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Livia FELICETTI
Analysis and rendering of contact vibrational stimuli for tactile perception
Doctorante : Livia FELICETTI
Laboratoire INSA : LaMCos
Ecole doctorale : ED162 MEGA
Among the 5 senses, the sense of touch is between the most articulated and the least understood. While we are able to master the signals that underlie sight and hearing, rendering them using loudspeakers and visual interfaces, the mechanisms underlying the sense of touch are still largely unknown. Touch, originating by the contact between the skin and the explored surface and involving several types of stimuli, requires a strongly multidisciplinary approach and involves a wide range of disciplines, such as Medicine, Neurosciences, Psychology, Dynamics, Tribology, Materials Sciences, and beyond. Tribology and Dynamics are involved in the study of all those complex phenomena that occur at the contact and that generate mechanical stimuli such as Friction-Induced Vibrations and contact forces, at the origin of the stimulation of skin’s mechanoreceptors. This Ph.D. thesis is collocated into a research line closely dedicated to the investigation of the role of Friction-Induced Vibrations (FIV) in mediating between the characteristics of surface textures and the way in which textures are perceived and discriminated. Analyses of vibrational stimuli originating from the exploration of periodic and isotropic textures have been carried out in the present work, revealing different key features in the discrimination of such textures. A tactile rendering device, named PIEZOTACT, has been developed to reproduce/mimic the FIV previously measured during the exploration of real surfaces, conducing as well campaigns on groups of volunteers, to evaluate their ability to discriminate real and simulated textures starting from the sole vibrational tactile stimuli. Finally, a multi-disciplinary collaboration with laboratories form Neurosciences and Psychology has been performed to evaluate the brain's response to the mechanical stimuli generated by the exploration of real and simulated surfaces.
Informations complémentaires
-
Bâtiment "San Pietro in Vincoli" Facoltà di Ingegneria Civile e Industriale, Sapienza Università di Roma (Roma, Italia)
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Amakoe Komlanvi AHYEE
Etude expérimentale et numérique de l'impact de la microstructure sur l'endommagement des roulements de ligne d'arbre moteur sous indentation
Doctorant : Amakoe Komlanvi AHYEE
Laboratoire INSA : LamCos
Ecole doctorale : ED162 MEGA
Les roulements sont des composants mécaniques essentiels qui facilitent la transmission de puissance et le guidage en rotation avec un frottement réduit. L’endommagement en surface reste aujourd’hui la principale source de défaillance des roulements, il est la plupart du temps dû à la présence de défauts en surface tels : les rugosités et les indents.
Cette étude porte donc sur la compréhension des mécanismes d'endommagement en surface des roulements dus à l'écrasement des particules. Ainsi une caractérisation des matériaux des roulements (M50, 32CDV13, M50NiL, M50NiLDH) ayant subi des traitements thermochimiques a permis d’identifier le gradient de micro-dureté ainsi que les lois de comportement matériau et leurs évolutions. Des modèles semi-analytiques prenant en compte les effets des bords ont été élaborés, mettant en évidence que les bords libres induisent une augmentation de l’amplitude de la pression de contact de Hertz ainsi qu’un décalage de cette dernière. Ainsi l’utilisation des solutions de Hertz pour résoudre le contact peut entraîner des erreurs pouvant atteindre jusqu’à 20% de la pression maximale de Hertz dans le cas d’un massif de dimension finie. Les effets de bords disparaissent et peuvent être négligés à partir d’une distance d/a ≥ 4. Pour simuler l’indentation sur les pistes de roulement, un modèle par éléments finis de type « couplé Euler-Lagrange » a été adapté afin de reproduire le processus d’indentation réel des roulements et d’en étudier les influences. Une étude paramétrique exhaustive du processus d’indentation a été menée, révélant ainsi que la taille, la nature, la forme et la position de la particule, les matériaux des roulements, la présence de glissement et son taux critique, ainsi que les contraintes résiduelles ont une influence significative sur la formation du bourrelet. L’étude de la fatigue de surface a impliqué l’utilisation de critères de fatigue notamment des critères dérivés de Dang van afin de localiser les sites d’amorçage des fissures. En s’appuyant sur la limite d’endurance expérimentale identifiée dans les travaux de Jacq et al. un critère d’endommagement basé sur la pente moyenne des bourrelets a été identifié. Ce critère permet de relier les propriétés des particules ainsi que les dimensions de l’indent. La pente moyenne critique ainsi que la hauteur de bourrelet critique sont donc identifiées via l’utilisation des expressions analytiques établies traduisant l’évolution des paramètres d’indentation.
Informations complémentaires
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Komlavi Mawuli SENYO
Design d'un procédé de mise en compression par impulsions électromagnétiques post soudage ou fabrication additive
Doctorant : Komlavi Mawuli SENYO
Laboratoire INSA : LaMCos
Ecole doctorale : ED162 MEGA
La mise en compression des pièces est une technique utilisée pour augmenter la durée de vie des pièces. Elle consiste à introduire des déformations plastiques et par la suite des contraintes résiduelles dans des pièces. Pour ce faire, plusieurs procédés ont été mis au point à savoir, le grenaillage, la mise en compression par choc laser, la mise en compression par jet d'eau. Ces procédés biens que permettant d'atteindre l'objectif de déformation plastique et d'introduction de contrainte résiduelle de compression, présentent des limitations et inconvénients. On peut citer la modification de l'état de surface, des profondeurs traitées faibles, des difficultés de contrôles ainsi que la contamination des milieux sensibles, etc. Des études sont menées sur de nouveaux procédés pouvant permettre d'avoir des mêmes résultats voire meilleurs que les procédés précités. Le procédé de mise en compression par impulsions électromagnétiques se classe dans ces nouveaux procédés. Il consiste à la génération d'un puissant champ électromagnétique dans une pièce conductrice de courant. Ce champ favorise la génération des forces de Laplace dans la pièce. Ces forces déforme plastiquement le matériau et en introduisant des contraintes résiduelles de compression dans la pièce. La modélisation et la simulation du procédé de mise en compression par impulsions électromagnétiques fait l'objet de cette thèse. La littérature est quasiment vierge en ce qui concerne ce procédé mise à part quelque travaux de modélisation 2D axisymétrique. Un modèle 2D couplé électromagnétique, mécanique a été mise en place pour simuler le procédé. Ce modèle a permis de confirmer la possibilité de mise en compression des pièces et l'influence de certains paramètres clés du procédé. Il a été utilisé également pour faire une étude de la tenue mécanique de l'inducteur. Enfin une approche de modélisation 3D a été présenté et utilisé pour faire une simulation multi- impacts du procédé.
Informations complémentaires
-
Amphithéâtre Marc Seguin (Villeurbanne).
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Louis MESNY
Compréhension et optimisation du pompage énergétique multiphysique dans les absorbeurs de vibrations non-linéaires hybrides
Doctorant : Louis MESNY
Laboratoire INSA : LaMCos
Ecole doctorale : ED162 : Mécanique, Energétique, Génie Civil, Acoustique de Lyon
Les absorbeurs passifs, également connus sous le nom de Tuned Mass Dampers (TMD), sont couramment utilisés pour réduire les vibrations. Leur principal avantage réside dans leur facilité de mise en œuvre. Cependant, leur plage d'efficacité est limitée, car ils sont conçus pour fonctionner à une fréquence spécifique. Au cours des dernières décennies, deux nouvelles voies ont émergé. Premièrement, l'hybridation qui combine des techniques de contrôle actif impliquant des actionneurs, des capteurs et des lois de contrôle avec un contrôle passif. Ce système combiné apporte une caractéristique "fail safe", ce qui signifie qu'il est robuste face aux défaillances des composants actifs et présente généralement des performances supérieures par rapport aux systèmes purement passifs. Deuxièmement, la fonctionnalisation des non-linéarités dans les absorbeurs de vibrations, on parle alors d'absorbeurs non-linéaires. Ces derniers peuvent être purement non linéaires, tels que le Nonlinear Energy Sink (NES), ou disposer en plus d'une partie linéaire, comme le Nonlinear Tuned Vibration Absorber (NLTVA). L'introduction de ces non-linéarités élargit la gamme d'applications des absorbeurs. Cependant, les non-linéarités peuvent également entraîner des phénomènes indésirables, tels que des solutions isolées ou des points de bifurcation, qui doivent être identifiés pour assurer un fonctionnement sûr et efficace. Par conséquent, l'objectif de cette thèse est de combiner ces approches afin de surmonter leurs limitations individuelles. Le manuscrit fournira un aperçu détaillé des outils utilisés pour analyser les systèmes à dynamique non-linéaire couplés à un contrôle actif. Ces outils serviront ensuite de base pour la compréhension et la validation d'un absorbeur non-linéaire hybride expérimental.
Informations complémentaires
-
Amphithéâtre Emilie Chatelet, Bibliothèque Marie Cuire, INSA-Lyon (Villeurbanne)
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Ruochen ZHENG
Simulation de la mise en forme de renforts NCF de composites basée sur des approaches mesoscopique
Doctorant : Ruochen ZHENG
Laboratoire INSA : LaMCos
Ecole doctorale : ED162 : Mécanique, Energétique, Génie Civil, Acoustique de Lyon
Les méthodes de modélisation mésoscopiques sont de plus en plus utilisées pour les renfort fibreux car elles sont capables de capturer certains défauts locaux tels que les (par exemple les écarts) se produisant pendant le processus de drapage. Ils permettent également de réaliser une caractérisation virtuelle du matériau du tissu, utilisée ultérieurement dans des simulations macroscopiques. Un point clé de la simulation à méso-échelle est de disposer d’un modèle 3D précis basé sur la géométrie réelle afin de déterminer plus précisément les propriétés mécaniques du tissu. Un modèle mésoscopique de NCF biaxial est proposé, qui atténue le coût de calcul et donne une représentation précise du comportement effectif.
Informations complémentaires
-
Amphithéâtre Clémence Royer (bâtiment Jacqueline Ferrand) - INSA Lyon (Villeurbanne)
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de thèse : Esso-Passi PALI
Modélisation des phénomènes de coalescence des fissures sous pression associés au procédé Smart Cut
Doctorant : Esso-Passi PALI
Laboratoire INSA : LaMCos
Ecole doctorale : ED162 MEGA
La méthode X-FEM a été utilisée pour modéliser la rupture par coalescence des fissures dans le cadre du procédé Smart Cut. Le maillage fractal 3D a été implémenté pour réduire le temps de calcul en assurant une bonne précision sur le calcul des facteurs d’intensité des contraintes et le taux de restitution d’énergie. Un algorithme basé sur la méthode implicite d’Euler a été implémenté pour prédire la pression dans une fissure au cours de sa propagation et les résultats ont été validés par comparaison à la solution analytique d’une fissure circulaire se propageant dans un massif infini. Le modèle de coalescence de deux fissures en 3D a été développé et des critères de coalescence ont été établis. Une approche a été mise en place pour modéliser des fissures en 3D à partir de données expérimentales. Une technique prospective a ensuite été proposée pour évaluer l’exposant de rugosité à partir de la surface créée suite à la propagation d’une fissure. Enfin, une étude paramétrique a été menée pour évaluer les facteurs pouvant influencer la rugosité post-fracture et les critères de coalescence dans le Smart Cut, notamment la présence d’oxyde de silicium.
Informations complémentaires
-
Amphithéâtre Marc Seguin (Villeurbanne).
Derniers évènements
Exposition « Pas touche ! »
Du 18 juin au 03 juilCourse Croisière Inter INSA - 2025
Du 21 au 22 juin
Sciences & Société
Soutenance de l'Habilitation à Diriger des Recherches en sciences : Eric CHATELET
Dialogue modélisation, expérimentation en dynamique des rotors, des structures et vibrations induites par contact frottant
Maître de conférences : Eric CHATELET
Laboratoire INSA : LaMCoS
Composition du jury :
Rapporteurs :
- Marie Ange BUENO
- Olivier BONNEAU
- Gaël CHEVALLIER
Jury :
- BUENO Marie Ange - Professeur - LPMT, Ecole Nationale Supérieure d'Ingénieurs de Sud Alsace (ENSISA), Mulhouse
- BONNEAU Olivier - Professeur - Institut Pprime, Université de Poitiers-ENSMA, Chasseneuil
- CHEVALLIER Gaël - Professeur - Université de Franche-Comté - UFR ST, Besançon
- KHALIJ Leila - MCF HDR - LMN, INSA Rouen, Saint-Étienne-du-Rouvray
- MASSI Francesco - Professeur - DIMA, Université de la Sapienza, Rome
- JACQUELIN Eric - Professeur - IUT Lyon 1, Départ. GCCD - la Doua, Villeurbanne
- BOU-SAÏD Benyebka - Professeur - LaMCoS, INSA Lyon, Villeurbanne
- DUFOUR Régis - Professeur - LaMCoS, INSA Lyon, Villeurbanne
Informations complémentaires
-
INSA Lyon - Amphi Clémence Royer, Bâtiment Jacqueline Ferrand - Villeurbanne