MATEIS

23 oct
23/10/2024 21:00

Sciences & Société

Soutenance de thèse : Alexandru TECHERES

23/10/2024 à 21h (CEST) / 24/10/2024 à 6h (AEDT)

Understanding the role of impurities in the precipitation kinetics in Al-Sc-Zr alloys

Doctorant : Alexandru TECHERES

Laboratoire INSA : MATEIS

Ecole doctorale : ED34 : Matériaux de Lyon

The strengthening of Al alloys via Sc and Zr has been well documented in the literature. The formation of L12 Al3Sc and Al3Zr leads to improvements of mechanical properties through formation of precipitates during artificial ageing. However, the scarcity and cost of Sc have always been a challenge towards adoption on an industrial scale. Nonetheless, new mineral deposits discovered in Australia, together with novel processing methods create the expectation that the price of Sc will become more accessible.
In the context of a circular economy, recycling is the norm. However, this introduces impurities in the recycled material which originate from the imperfect sorting of scraps. The precipitation kinetics of Al3Sc in high purity, controlled composition Al alloys is well understood. However, the precipitation process in the presence of impurities such as Fe and Si has not been studied.
Therefore, the problematic of the current thesis focuses of the effect of impurities on the precipitation kinetics in Al-Sc-Zr during artificial ageing at various temperatures. Previous reports in the literature indicate an accelerating effect of Si and there are limited reports on the effect of Fe.
Using a combinatorial method, in this work we investigate the effect of Si on the precipitation kinetics via samples with a macroscopic composition gradient (also called diffusion couples). Additionally, two sets of samples are investigated with different Fe concentration to comparatively study the effect of Fe. The precipitation kinetics is observed indirectly via small angle x-ray scattering (SAXS) and hardness measurements across the samples with macroscopic composition gradient. Furthermore, advanced characterisation techniques such as Scanning Electron Microscopy, Transmission Electron Microscopy and Atom Probe Tomography are employed to analyse conditions determined as critical during the ageing.
A strong acceleration effect was observed, with increased Si, agreeing with previous reports. However, a saturation effect was identified, which seems to depend on the ageing temperature. This is discussed as a function of Si-vacancy interaction in the precipitation of Al3Sc. Modelling in a Kampmann-Wagner Numerical framework was performed assuming various numbers of heterogenous nucleation sites. To match experimental results, it was required to increase the diffusion coefficient of Sc in the presence of Si, further highlighting the acceleration effect.
It was identified via TEM and APT that the presence of Si leads to smaller mean radius and larger volume fraction of precipitates, which promote larger increments of the mechanical properties. Furthermore, it was observed that Si replaces Al in the structure of the precipitates and that the concentration of Si in the precipitates increases with the concentration in the solid solution.
Finally, it was observed that Fe can replace Al in the precipitates too. Moreover, in the presence of Fe, Si is found in higher concentrations inside the precipitate than when Fe is virtually absent. However, only a minimal difference is observed in terms of hardening between the alloys with different Fe content and only early in the ageing process. Analytical strengthening calculations seem to predict well the hardening in a Fe-free alloy but poorly in the Fe-rich one. This indirectly suggests that Fe has an effect on the precipitation kinetics, but more investigations are needed to fully understand the effect of Fe on precipitation in these alloys.

 

Informations complémentaires

  • https://deakin.zoom.us/j/83683315974?pwd=v9dIuNeebiCxC8etah5ItcjBK5q6Ue.1 (Waurn Ponds, Australia)

18 oct
18/10/2024 09:30

Sciences & Société

Soutenance de thèse : Louis LESAGE

Thermodynamic and kinetic control of liquid metal dealloying for the design of porous metallic powders

Doctorant : Louis LESAGE

Laboratoire INSA : MATEIS
Ecole doctorale : ED34 Matériaux de Lyon

Metallic powders are becoming increasingly widespread due to their use in additive manufacturing processes and as catalytic materials. In this context, it is appealing to develop processes that enable the formation of open porosities in metallic powders to modify their mechanical properties and increase their specific surface area. We propose using liquid metal dealloying (LMD) to create porous powders with modified microstructures and properties. LMD is a novel technique that involves the selective dissolution of an alloying element from a precursor in a liquid metal solvent. This results in the formation of a continuous ligament structure and open porosity in the dealloyed layer.
By mixing precursor and solvent powders and heating them above the melting temperature of the solvent, we successfully dealloyed FeNi and NiCu precursor powders. This process led to either fully porous or partially porous microstructures featuring core- shell morphologies. To better understand the kinetics of the dealloying process and the resulting microstructure, we developed a diffusion model based on thermodynamic principles and successfully compared it with experimental results obtained from NiCu alloys immersed in liquid Ag. Additionally, we used in situ X-ray diffraction to monitor the phase transformations occurring during the dealloying of FeNi particles by Mg. This combination of experimental and simulation work demonstrates how dealloyed structures are controlled by equilibrium thermodynamics and/or the kinetics of the dealloying reaction. Our results highlight the potential of LMD to design dealloyed powders with tailored dealloyed fractions, ligament sizes, compositions, and microstructures. Finally, we propose using compression tests applied to powders to assess their suitability for applications in cold spray.

Informations complémentaires

  • Amphithéâtre de BU, Lyon 1 (Villeurbanne)

10 sep
10/09/2024 14:00

Sciences & Société

Soutenance de thèse : Hugo GIRARD

Characterization of the fiber-matrix interface fracture properties in long fiber composites

Doctorant : Hugo GIRARD

Laboratoire INSA : MATEIS

École doctorale : ED34 : Matériaux de Lyon

Fiber-matrix interface in long fiber composite is a key aspect of global composite mechanical properties since it drives damage initiation and load transfer. Fiber-matrix interface debonding is usually the first type of damage that occurs when the composite is subjected to transverse loading. After initiation, the interface debonding propagates and often kinks into the matrix, leading to further critical defects for the structure. As a result, it is crucial to accurately characterize the fiber-matrix interface in order to prevent or control damage in composites. Going beyond existing experimental methods currently focused on interface shear fracture properties, single-fiber microcomposite tensile sample loaded transversely are developed to simultaneously characterize opening and shear fracture properties. An accurate experimental characterization of the fiber-matrix debonding process allowed the identification of the interface fracture properties using adequate 2D and 3D numerical approaches and related fracture models such as the Coupled Criterion (CC) and Cohesive Zone Models (CZM). Both the CC and the CZM are able to reproduce the experimentally observed debonding process in 2D, the 3D model being able to describe the free surface singularity. In 3D, the fracture property identification yields tensile strengths and critical energy release rates respectively slightly higher and in the same order of magnitude than those identified in 2D. The 3D model does not enable identifying the shear fracture properties, unlike in 2D. In 2D the optimal initiation crack shapes correspond to i) the stress isocontours for small brittleness numbers, ii) the energy-based shapes for large brittleness numbers and iii) neither of them for intermediate brittleness numbers. The 2D stress isocontours-based debonding shapes provide an accurate estimate of the initiation loading. In 3D, the optimum initiation crack always corresponds to energy-based debonding shapes and the 3D stress isocontours-based debonding shapes may thus overestimate the initiation loading by up to 30%.

 

Informations complémentaires

  • Amphithéâtre Gaston Berger, INSA-Lyon (Villeurbanne)

19 juil
19/07/2024 14:00

Sciences & Société

Soutenance de thèse : Junxiong WANG

Molecular dynamics simulation of semicrystalline polymers: from molecular topology to mechanical properties

Doctorant : Junxiong WANG

Laboratoire INSA : MateiS

École doctorale : ED34 : Matériaux de Lyon

Semi-crystalline polymers have attracted widespread attention due to their wide range of industrial applications, attractive mechanical properties, and good chemical resistance. Semi-crystalline polymers exhibit excellent mechanical properties due to their unique molecular structure (crystalline and amorphous phases overlapping each other). Topological molecules, like ties, loops, … and entanglements in amorphous phase, serve as stress transmitters and can be crucial to mechanical properties. However, these microstructures cannot be studied quantitatively experimentally, and the nonequilibrium process of crystallization and how the microstructure affects mechanical properties cannot be studied at the nanoscale. The dependence of the mechanical properties of semi-crystalline polymers on topology and entanglement has been explored using a coarse-grained model through molecular dynamics simulations. From cooling a melt, and after isothermal treatment, semi-crystalline polymers with lamellar structures were obtained with different entanglement densities and topologies. The strongest mechanical properties are shown when the tensile direction is highly consistent with the crystal chain orientation. And the system with a higher entanglement density has a smaller yield stress but a significant stress-hardening regime, indicating that high entanglement density effectively increases the stress-hardening effect. Additionally, the effect of different topologies on mechanical properties has been explored. Uniaxial tensile test results show that cilia have little effect on mechanical properties. The yield stress increases with the number of loops, showing that not only the loops but also the number of topologies has a strong influence on the mechanical properties. The tie molecules appear to have a slightly greater impact on the mechanical properties than the loops, manifesting in a slight strain softening effect. These results will enhance the understanding of the relationship between microstructure and mechanical properties of semicrystalline polymers.

Informations complémentaires

  • Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne

10 juil
10/07/2024 14:00

Sciences & Société

Soutenance de thèse : Yohan DOUEST

Development of Ti-based bulk metallic glasses for dental applications through innovative design strategy, process optimisation and surface functionalisation

Doctorant : Yohan DOUEST

Laboratoire INSA : MATEIS

École doctorale : ED34 : Matériaux de Lyon

Due to their long-range disordered atomic structure, Ti-based bulk metallic glasses (BMGs) exhibit at least twice the mechanical strength of crystalline Ti-alloys currently used in dental implant applications. Ti-based BMGs are therefore candidate materials to downsize dental implant components and reduce their invasiveness. Although numerous research works have emphasised their potential, no commercial products have been made available. Several aspects hinder their practical application. Firstly, they generally contain high amount of copper. Apart the controversy regarding its biological safety, copper has been shown to trigger pitting corrosion in chloride environment of amorphous alloys, thereby limiting their corrosion resistance. Secondly, Ti-based BMGs are challenging to process. Because of their restricted glass forming ability (GFA), they are more prone to the formation of crystalline heterogeneities even when high cooling rates are applied.
This PhD investigates independent research areas related to Ti-based BMGs, ranging from designing strategies and processability to surface functionalisation. At first, a machine learning (ML) model is employed to explore compositional spaces with reduced amount of copper within the Ti-Zr-Cu-Pd system. The model’s predictions are experimentally assessed, and a critical discussion is provided on the relevance of the ML-guided approach. Secondly, the processability of Ti40Zr10Cu36Pd14, a representative composition of Ti-based BMGs, is evaluated. Processing techniques from both laboratory and industry are compared, and the resulting as-cast crystalline heterogeneities are studied to give insights into their formation pathways. Lastly, two surface modifications aimed at reducing the influence of copper on the corrosion resistance of Ti40Zr10Cu36Pd14 are proposed. One solution involves the deposition of coating already used in dental implant systems while the second solution consists of a chemical etching treatment. The results obtained within this PhD aim to contribute both scientific and industrial advancements, while also suggesting new research topics.

Informations complémentaires

  • Salle des thèses, Bâtiment Irène Joliot Curie (bât. INL), INSA-Lyon (Villeurbanne)    

23 mai
23/05/2024 09:30

Sciences & Société

Soutenance de thèse : Camille ZOUDE

Formulation, élaboration et caractérisation de géopolymères poreux pour une application de stockage d'énergie

Doctorante : Camille ZOUDE

Laboratoire INSA : MATEIS

École doctorale : ED34 : Matériaux de Lyon

Dans le contexte actuel, marqué par l'importance croissante de la gestion de l'énergie, les systèmes de stockage d'énergie thermochimique se révèlent être prometteurs, notamment ceux combinant un matériau hôte poreux avec des sels hygroscopiques.
Ces systèmes, de haute densité énergétique, reposent sur une réaction renversable : la déshydratation est endothermique et l’hydratation est exothermique. Les géopolymères sont des candidats prometteurs comme matériaux hôtes en raison de leurs propriétés mécaniques, leur facilité de mise en œuvre et leur faible coût. Toutefois, leur porosité nécessite une optimisation pour l’application visée.
À cet effet, trois approches sont étudiées ici : la fabrication additive (Direct Ink Writing), le moussage chimique, et la combinaison des deux. Ces approches nécessitent un important travail de formulation, notamment par l’ajout d’additifs pour adapter leur rhéologie au processus d’extrusion et pour générer une porosité homogène. Sans modifier la cinétique de prise, leur introduction permet la formation d’une porosité contrôlée, atteignant jusqu’à 71 % par moussage chimique. La combinaison de robocasting et de moussage direct plafonne la porosité totale à 65 %, en raison d’une densification des filaments lors de l’extrusion. Les performances mécaniques des échantillons sont évaluées en fonction de leur porosité et des conditions dans lesquelles ils ont été conservés (humidité et température).
L’introduction du sel dans le géopolymère entraîne la formation de composés, par réaction du sodium avec le sel, nuisant aux propriétés thermiques. Cette formation est limitée grâce à l’ajustement du protocole de fabrication. Les propriétés thermiques des composites, évaluées à l’aide de tests dynamiques sur un banc thermique, montrent la capacité des composites à stocker de l’énergie à la fois par sorption physique et chimique. Cependant, des travaux plus approfondis sont nécessaires pour optimiser la répartition du sel et la distribution des diamètres d’accès aux pores dans les géopolymères.
 

Informations complémentaires

  • Amphithéâtre Gaston Berger, INSA-Lyon (Villeurbanne)

05 avr
05/04/2024 14:00

Sciences & Société

Soutenance de thèse : Louis-Marie LEBAS

Development of multiscale liquid phase electron tomography and its application to the study of ultra-sensitive materials

Doctorant : Louis-Marie LEBAS

Laboratoire INSA : MATEIS

É​cole doctorale : ED34 : Matériaux de Lyon

The demand for characterizing a single beam-sensitive sample at the nanoscale is increasing for applications in both materials science and biology.
This study presents a protocol with a software solution that enables precise control over the electron microscope and a custom sample holder, facilitating automated acquisition of fast 3D data from a single object under environmental conditions. This method allows for imaging with a controlled low electron dose and multimodal electron signals. It can be used in environmental scanning or transmission electron microscopes for easy sample preparation and to benefit from high resolution. The software has several key features, including automatic eucentricity adjustment, automatic acquisition with a new drift correction algorithm that eliminates the need for an extra validation step, and focus and astigmatism adjustment assistance.
To demonstrate its effectiveness, the morphology of typical samples such as latex nanoparticles, silica aerogels, and gold nanoparticles is investigated. As an example of a more comprehensive study, a multi-scale test was performed using AlOOH to evaluate its morphological properties at different scales. The Environmental Scanning Electron Microscope (ESEM) was used to monitor the sample in 3D during a dehydration-rehydration cycle and also to evaluate the penetration of gold nanoparticles. The Transmission Electron Microscope (ETEM) provided better resolution and allowed for the quantification of sample porosity down to the nanoscale.
One major achievement of the protocol is that it allows for recording tilt series for electron tomography investigations in STEM mode at multiple scales while using a total electron dose that is an order of magnitude lower than what is accepted in cryo electron tomography. Therefore, this study represents a significant advancement in the analysis of different samples at varying humidity levels. Additionally, it provides a simpler sample preparation process compared to cryo-TEM techniques, while maintaining a similar or even lower radiation dose.

 

Informations complémentaires

  • Amphithéâtre Émilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne

04 avr
04/04/2024 10:00

Sciences & Société

Soutenance de thèse : Sylvain FOURNIER

Fabrication additive par stéréolithographie de composites céramiques pour application médicale : Du développement de pâtes spécifiques aux compositions et architectures adaptées

Doctorant : Sylvain FOURNIER

Laboratoire INSA : MATEIS
Ecole doctorale : ED34 : Matériaux de Lyon

Les techniques de fabrication additive fondées sur la photopolymérisation sélective de couches successives permettent l’élaboration de pièces céramiques complexes, avec une résolution de quelques dizaines de micromètres. Le procédé de stéréolithographie implique le raclage d’une pâte fortement chargée en particules céramiques, soumise à de grandes contraintes de cisaillement. La photopolymérisation laser entraîne ensuite le durcissement sélectif des parties de la pièce avant l’étalement de la prochaine couche. A la fin du procédé, des traitements thermiques sont appliqués pour supprimer le polymère et consolider l’objet céramique. Cette thèse porte sur l’étude du procédé en vue de son utilisation dans la fabrication d’implants spécifiques, adaptés à chaque cas clinique.
Notre approche associe la caractérisation fine des systèmes « polymère-poudre céramique » afin de diminuer les défauts d’étalement et de polymérisation qui peuvent compromettre les propriétés mécaniques des implants céramiques. Une étude rhéologique comportant des essais de cisaillement continu, oscillatoire et multiaxial nous a permis de rationaliser le comportement des pâtes et de comprendre l’impact de chaque élément de la formulation. L’écoulement du matériau à fort taux de cisaillement est perturbé par la rugosité des particules. La dispersion adéquate des particules permet d’éviter un rhéoépaississement de la pâte. L’ajout d’une vibration lors du raclage permet également de réduire la viscosité. Des mesures du degré de polymérisation par spectroscopie infrarouge ont montré une certaine inhomogénéité due à la fabrication couche par couche, ce qui nécessite un déliantage thermique contrôlé pour limiter la formation de fissures.
Dans un deuxième temps, des poudres composites à base de zircone cériée, présentant une certaine ductilité par transformation de phase, sont utilisées afin de limiter l’impact des défauts d’élaboration. Les composites élaborés présentent une microstructure plus hétérogène que ceux élaborés par pressage, ce qui tend à augmenter leur transformabilité, améliorant finalement la résistance aux défauts d’impression.

Informations complémentaires

  • Bibliothèque universitaire des sciences, Université Lyon 1 (Villeurbanne)

01 fév
01/02/2024 10:00

Sciences & Société

Soutenance de thèse : Florian STEINHILBER

On the use of X-ray computed tomography to investigate the influence of surface integrity on the fatigue properties of additively manufactured Ti64

Doctorant : Florian STEINHILBER

Laboratoire INSA : MATEIS

Ecole doctorale : ED34 : Matériaux de Lyon

Manufacturing defects are known to significantly impact the fatigue properties of additively manufactured (AM) components. Notably, the large surface roughness, typical of AM processes, leads to increased stress concentrations that promote crack initiation, thereby reducing fatigue resistance. Traditionally, surface roughness and related defects are evaluated using tools like white light interferometers. However, these instruments offer a limited, single-perspective and only partially three-dimensional analysis. Those limitations do not enable the thorough characterization of the complex surfaces and hidden defects typical in AM components. This study describes a methodology for performing a 3D surface analysis using X-ray Computed Tomography (XCT) data. The method is illustrated on various samples, ranging from simple cylinders to more intricate architected structures. It turns out to be very efficient at detecting critical surface defects, such as notches hidden by partially melted powder particles. The methodology is then applied to examine the effect of surface defects on the fatigue properties of Ti64 produced by Laser Powder Bed Fusion (L-PBF). This analysis includes both as-built surfaces and those subjected to post-treatments, specifically investigating the impact of Plasma electrolytic Polishing (PeP) and surface oxygen contamination (presence of an
\textalpha-case layer) resulting from high-temperature heat treatment 860°C). Using XCT for 3D characterization, defects responsible for fatigue failure are identified, the latter being predominantly surface valleys. The method's ability to predict crack initiation locations is also evaluated, as well as its potential to estimate the fatigue resistance of a specimen before testing.
 

Informations complémentaires

  • Amphithéâtre Clémence Royer (bâtiment Jacqueline Ferrand) - (Villeurbanne)

11 jan
11/01/2024 14:00

Sciences & Société

Soutenance de thèse : Romain HAEFFELE

Elaboration, characterization, and reliability of Copper-Copper connections for the assembly of advanced technology microelectronic devices

Doctorant : Romain HAEFFELE

Laboratoire INSA : MATEIS

Ecole doctorale : ED34 : Matériaux de Lyon

Dans les composés microélectroniques, la connexion électrique entre le circuit intégré et son boîtier est généralement effectuée par un procédé de câblage qui implique une soudure entre un fil et deux plots de connexion. Une récente technologie permet de réaliser ce câblage sans soudure intermétallique (liaison cuivre-cuivre). Cependant, lors des procédés d'assemblage et du fonctionnement du produit, le pad de cuivre est exposé à des environnements agressifs (température, humidité et contaminants halogénés). La corrosion des plots de cuivre peut entraîner une rupture du câblage et une baisse de la fiabilité du dispositif. Il est donc essentiel de maîtriser l'état de surface des plots tout au long de l'assemblage précédent le procédé de câblage. Une couche d’alumine ultra-mince (< 15 nm) est déposée sur le cuivre pour le protéger tout en permettant le câblage thermosonique. Cependant, des phénomènes de corrosion localisée ont été observés. Il est question dans cette thèse d’étudier les mécanismes de dégradation de ces systèmes revêtus Cu/Al2O3 pour proposer un revêtement qui permet de répondre au cahier des charges. Une caractérisation fine du substrat a été réalisée par des techniques de microscopie avancées. Il a été montré que l’état de surface du cuivre est un facteur très important. En effet, la surface du substrat présente des excroissances de grains (zones de fortes contraintes entre les grains), qui ne permettent pas une bonne tenue de la couche d’alumine. Une étude approfondie de la réactivité par voie électrochimique du système revêtu a permis de comprendre les mécanismes de dégradation du cuivre en milieu aqueux et chloruré. Sur la base de ces nouvelles connaissances, un revêtement innovant capable de résister à la fois à l'environnement agressif et aux contraintes mécaniques du substrat a été proposé. Le nouveau système revêtu a été validé sur un dispositif réel et son intégration dans le procédé de câblage a été réalisée avec succès.

Informations complémentaires

  • Salle des thèses, Bâtiment Irène Joliot Curie, Institut des Nanotechnologies de Lyon, INSA-Lyon (Villeurbanne)    

Pages