
Sciences & Société
Soutenance de thèse : Pau BECERRA ZUNIGA
Multi-stabilité et rupture de symétrie dans un système vibro-impact non linéaire avec jeu annulaire : analyse expérimentale et numérique des bifurcations
Doctorant : Pau BECERRA ZUNIGA
Laboratoire : LAMCOS - Laboratoire de Mécanique des Contacts et des Structures
École doctorale : ED 162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
Dans les générateurs de vapeur, les vibrations induites par l'écoulement génèrent des impacts qui peuvent provoquer l'usure des tubes intérieurs au fil du temps. Afin de mieux comprendre la réponse non linéaire de ces structures, une maquette représentant un tronçon de tube de générateur de vapeur a été conçue, consistant en un tube droit bi-encastré vibrant en flexion avec une butée annulaire à jeu avec un dispositif pour contrôler l'excentrement tube-butée. Parallèlement, un modèle d'ordre réduit a été construit afin de prédire la réponse la maquette et un algorithme de continuation basé sur la méthode d'équilibrage harmonique (HBM} a été utilisé pour calculer ses réponses stationnaires multistables. Cet algorithme ainsi qu'une technique de suivi des bifurcations ont été implémentés dans Cast3M (code de calcul du CEA}. Les résultats expérimentaux ont montré la coexistence de différents régimes pour le même ensemble de paramètres, ce qui a été correctement prédit par le modèle. Ensuite, les résultats expérimentaux et numériques ont été confrontés pour différentes symétries de tube-butée et malgré le modèle d'ordre réduit, les deux correspondaient remarquablement. Ces comparaisons ont été effectuées pour différentes configurations de symétrie tube-butée et l'analyse de bifurcation s'est avérée particulièrement précise pour prévoir l'apparition de régimes multi-stables. En outre, le suivi des bifurcations a été utilisé pour analyser l'influence d'un modèle de frottement glissant régularisé. Enfin, l'influence du nombre de modes retenus dans le modèle d'ordre réduit a également été examinée. Ces résultats démontrent la coexistence de plusieurs réponses dynamiques dans une maquette assez simple, tout en mettant en évidence la robustesse et les points faibles des outils numériques développés au cours de ce travail.
Informations complémentaires
-
Centre CEA D306, Porte Est, 91190 Saclay
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Cindy DELAGE
Rôle et avantages de l'intelligence artificielle dans la modélisation du transfert radiatif dans les atmosphères gazeuses et son application à l'analyse des données satellitaires.
Doctorante : Cindy DELAGE
Laboratoire INSA : CETHIL - Centre d'Énergétique et de Thermique de Lyon
École doctorale : ED162 : MEGA de Lyon (Mécanique, Énergétique, Génie civil, Acoustique)
L'étude de l'atmosphère terrestre nécessite le traitement de données massives issues d'instruments de télédétection. Ce traitement permet d'estimer des variables thermophysiques telles que la température et les concentrations de différentes espèces. Pour obtenir ces informations, plusieurs étapes de traitement sont indispensables. L'une de ces étapes concerne le calcul de la transmissivité dans le but de résoudre !'Équation de Transfert Radiatif. En théorie, un calcul exact est possible en utilisant le modèle dit raie par raie (Line-by-Line, LBL). Cependant, ce modèle requiert un temps de calcul extrêmement élevé, ce qui le rend prohibitif pour les applications atmosphériques, où le nombre de raies à prendre en compte peut atteindre des millions. Pour cette raison, la méthodologie LBL est principalement utilisée comme référence pour valider des modèles visant à estimer la transmissivité avec la plus grande précision possible par rapport aux calculs LBL, et dans le moindre temps de calcul (CPU) possible. Ainsi, un nouveau modèle a été proposé ces dernières années, appelé 1-distributions. L'objectif principal de ce manuscrit est de proposer un résumé de l'état de l'art de ce modèle, puis des perspectives de recherche afin d'en améliorer la précision. En complément, de premières validations dans des cas d'application concrets utilisant les instruments Metlmage (EUMETSAT, ESA) et TROPOMI (ESA) seront proposées en annexe du manuscrit. La perspective de recherche consiste principalement à combiner des outils de physique et de statistiques, ou d'apprentissage automatique, pour optimiser les poids impliqués dans le modèle 1-distributions. Dans les cas d'application préliminaires, cette étape d'optimisation conduit à une erreur relative maximale inférieure à 0,5 % par rapport au calcul LBL, avec un temps de calcul de 10 ms pour un calcul atmosphérique complet (1200 valeurs, une tous les 0,5 km). Ces résultats devront être validés et généralisés dans de futures recherches, pour que ces perspectives de recherches deviennent des méthodologies validées.
Informations complémentaires
-
Amphithéâtre Émilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Mots clés
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Marta BEGHELLA BARTOLI
Développement d'une séquence IRM pour une quantification robuste et efficace de la vitesse du sang simultanément dans le cœur et les grands vaisseaux.
Doctorante : Marta BEGHELLA BARTOLI
Laboratoire INSA : CREATIS - Centre de Recherche en Acquisition et Traitement de l'image pour la Santé
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
L'IRM en flux 4D (4D Flow MRI) est une technique d'imagerie par contraste de phase qui permet une évaluation complète de la fonction cardiovasculaire en fournissant des mesures volumétriques du flux sanguin tout au long du cycle cardiaque. La phase du signal IRM est proportionnelle à la vitesse et est limitée par le paramètre d'encodage de vitesse (VENC), ce qui restreint la plage de vitesses à -VENC et +VENC. L'IRM en flux 4D permet de capturer des modèles complexes de flux sanguins, incluant des vitesses faibles dans les veines et des vitesses élevées dans les artères. Le choix du bon VENC est crucial : un VENC faible entraîne un aliasing lorsque les vitesses dépassent ±VENC, tandis qu'un VENC élevé introduit du bruit, rendant les mesures de flux lent peu précises. Le VENC optimal équilibre un bon rapport signal sur bruit (VNR) pour des mesures de flux lent précises et une large gamme dynamique pour éviter l'aliasing. Pour étendre la gamme dynamique de la vitesse, des techniques à double ou multiple VENC sont utilisées, en acquérant des données avec différentes valeurs de VENC. Le déballage standard en double-VENC utilise les données VENC_high pour détecter les sauts de phase dans les données VENC_low, ajoutant ou soustrayant des multiples de 2n pour combiner les avantages des deux acquisitions. Cependant, dans les cas pathologiques, cette méthode est limitée par l'aliasing dans les données VENC_high en raison de vitesses imprévues et élevées. Pour résoudre ce problème, nous avons introduit une nouvelle séquence 4D Flow MRI à double-VENC, basée sur la règle des coprimes pour le rapport de VENC, permettant une gamme dynamique de vitesses étendue, accompagnée d'un algorithme de déballage de vitesses efficace en termes de temps, validé in vitro et démontré in vivo chez des patients présentant des pathologies cardiovasculaires. Malgré ces progrès, les séquences à double-VENC sont limitées par des temps d'acquisition longs. L'échantillonnage radial 3D a émergé comme une solution prometteuse, conservant les données de basse fréquence essentielles lors de l'undersampling, et étant plus résistant aux artefacts de mouvement. En utilisant des acquisitions en libre circulation et des techniques d'auto-gating, l'IRM en flux 4D avec échantillonnage radial 3D permet d'extraire les signaux cardiaques et respiratoires directement des données de k-space, éliminant le besoin d'appareils externes comme les ECG. Nous avons également étudié la performance de la séquence double-VENC coprime combinée avec l'échantillonnage radial 3D pour résoudre les limitations de temps d'acquisition des méthodes à double-VENC. Bien que l'IRM en flux 4D offre des mesures détaillées, sa nature chronophage et son coût élevé la rendent moins pratique comparée à l'échocardiographie, notamment le Doppler couleur, qui est abordable, portable et offre une imagerie en temps réel. Cependant, la nature unidimensionnelle du Doppler couleur et sa dépendance à l'angle d'incidence limitent sa capacité à capturer des modèles complexes de flux tridimensionnels. Des techniques comme la cartographie du flux vectoriel intraventriculaire (iVFM) ont été développées pour extraire des champs de vitesses bidimensionnels à partir des données Doppler couleur, fournissant une représentation plus précise de la dynamique du flux sanguin. Bien que l'iVFM ait été validé par des simulations de dynamique des fluides computationnelle (CFD), des défis demeurent lors de la comparaison de ses résultats avec ceux de l'IRM en flux 4D, la norme en matière de mesures de vitesses de flux sanguin in vivo. Un défi majeur est la possibilité de divergences lors de la comparaison des champs de vitesses instantanés dérivés de l'iVFM avec les données moyennées dans le temps de l'IRM en flux 4D. Dans cette thèse, nous avons développé une méthodologie visant à réconcilier ces divergences en comparant les champs de vitesses mesurés par les deux techniques au sein du ventricule gauche.
Informations complémentaires
-
Amphithéâtre de la BU Sciences DOUA, 20 Av. Gaston Berger, 69100, Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Kexin YAN
Simulation numérique de la croissance d'anévrisme de l'aorte ascendante pour l'aide à la décision chirurgicale
Doctorante : Kexin YAN
Laboratoire INSA : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures
École doctorale : ED162 : MEGA de Lyon (Mécanique, Énergétique, Génie civil, Acoustique)
Prévoir l'évolution de la croissance des anévrismes de l'aorte ascendante (AscAA) représente un défi majeur en raison de l'interaction complexe entre la géométrie aortique, le comportement des tissus et la dynamique des flux sanguins. Cette étude explore un modèle de Fluide-Structure Croissance (FSG), basé sur la théorie Homogenized constrained mixture model (HCMM), pour simuler de manière réaliste la croissance des AscAA. Le modèle par éléments finis est initialisé avec une zone de dégradation de l'élastine, définie par la distribution des contraintes de cisaillement pariétales moyennes (TAWSS) dérivées des simulations de dynamique des fluides computationnelle. Dans un premier temps, nous menons une étude paramétrique pour évaluer l'influence de paramètres d'entrée spécifiques-tels que la direction du jet d'entrée, qui détermine les zones de TAWSS élevé, et la prédéformation initiale, qui impacte l'état homéostatique des tissus-ainsi que des paramètres matériaux sur les résultats de simulation de croissance. Ensuite, nous calibrons ces paramètres pour reproduire la croissance observée dans cinq cas patients, dont un cas disposant de données longitudinales. Nous parvenons à reproduire cette croissance longitudinale en tenant compte des mises à jour du TAWSS et de la rigidité du support élastique. Nos résultats montrent que l'approche FSG proposée, combinée à un ajustement des paramètres sensibles, permet de reproduire avec succès les schémas de croissance observés cliniquement, en validant à la fois le diamètre de l'anévrisme et la distribution des déplacements par comparaison à l'imagerie CT de suivi. Ce travail montre un potentiel prometteur pour une application à d'autres cas patients, contribuant ainsi aux efforts visant à développer un outil prédictif pour soutenir la prise de décision clinique.
Informations complémentaires
-
Amphithéâtre Émilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Simon TOINET
Développement et caractérisation de matériaux électroactifs conformables pour des applications médicales.
Doctorant : Simon TOINET
Laboratoire INSA : LGEF - Laboratoire de Génie Électrique et Ferroélectricité
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
Les maladies cardiovasculaires restent la première cause de mortalité mondiale, et leurs complications représentent un défi majeur pour la santé publique. Depuis une quinzaine d'années, les techniques endovasculaires se sont imposées comme le traitement de référence pour les anévrismes et les maladies artérielles périphériques, grâce à leur capacité à réduire les risques chirurgicaux et les coûts de santé. Cette évolution a été soutenue par une collaboration entre chirurgiens vasculaires et ingénieurs, visant à améliorer la précision opératoire et optimiser les conditions en bloc opératoire, notamment par la conception de guides et sondes orientables. Cependant, aucune solution actuelle ne répond pleinement aux exigences en termes de fiabilité, sécurité et encombrement. Cette thèse a pour objectif de développer un guide de navigation intra-artériel orientable électriquement. Deux polymères électroactifs, à base de polyfluorure de vinylidène (PVDF), ont été étudiés pour leur intégration dans un actionneur positionné à l'extrémité du guide. Une étude expérimentale combinant analyses électriques, mécaniques, structurelles, morphologiques et thermiques, appuyée par des modèles analytiques et éléments finis, a permis d'analyser les paramètres influençant la courbure de l'actionneur. Ces résultats ont conduit à l'élaboration d'une notice de calcul pour la conception optimale des actionneurs multicouches en flexion. L'optimisation du procédé de fabrication a permis de développer des actionneurs orientables à basse tension et faible courant, conformes aux normes de sécurité. Des prototypes de guides d'environ 1 mm, intégrant ces actionneurs optimisés, ont été fabriqués et testés dans un banc artère perfusé par un chirurgien. Les essais ont démontré la faisabilité du concept, atteignant les artères cibles du banc, constituant une preuve de concept solide du guide de navigation artérielle orientable électriquement.
Informations complémentaires
-
Amphithéâtre AEl, Batiment Gustave Ferrié, 8 Rue de la Physique, 69100 Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Apou Martial KPEMOU
Hydruration secondaire et fragilisation d'une gaine M5(Framatome) après sollicitation de type APRP
Doctorant : Apou Martial KPEMOU
Laboratoire INSA : LAMCOS - Laboratoire de Mécanique des Contacts et des Structures
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
L'hydruration secondaire, qui fait référence à une prise massive d'hydrogène par la gaine combustible due à l'oxydation à haute température de la surface interne de la gaine, peut survenir pendant un transitoire APRP (Accident de Perte de Réfrigérant Primaire), en cas d'éclatement de gaine permettant à la vapeur de pénétrer à l'intérieur. Ce phénomène peut ensuite induire une fragilisation de la gaine combustible et conduire à une rupture lors de la phase de renoyage. Plusieurs instituts de recherche internationaux réalisent des essais dits semi-intégraux afin de caractériser le comportement des gaines combustibles en APRP. Ces essais combinent plusieurs phénomènes interconnectés, rendant complexe une étude fine et à effets séparés du phénomène d'hydruration secondaire. Ces travaux de thèse ont pour objectif d'améliorer la compréhension du phénomène d'hydruration secondaire par le biais d'essais analytiques dédiés et couplés à des simulations physico-chimiques et mécaniques. Un protocole expérimental a été mis en place, pour simuler le phénomène d'hydruration secondaire en conditions APRP, afin de caractériser l'effet de divers paramètres. Les résultats expérimentaux obtenus indiquent que la quantité d'hydrogène absorbée par la gaine augmente à la fois avec la température d'oxydation (1100-1200°C) et la durée d'oxydation (100-1400s). Une tendance similaire a été observée en étudiant l'influence de différentes tailles de gap (80, 130 et 230 µm) et de différents diamètres d'ouverture (02 et 04 mm). Différentes méthodes de mesure de l'hydrogène ont été utilisées pour caractériser la distribution de l'hydrogène au sein du matériau après oxydation :la mesure par fusion dégazage, l'imagerie par neutrons et la µ-LIBS. Des techniques d'analyses locales (EPMA et µ-LIBS) ont également été employées afin de déterminer la distribution locale de l'oxygène et de l'hydrogène. Les essais à effets séparés ont été modélisés à l'aide du logiciel SHOWBIZ de l'ASNR. Les simulations réalisées ont permis de mettre en évidence les mécanismes de transport des gaz à l'intérieur de la gaine, ainsi que l'influence de différents paramètres. La tendance des résultats de simulations est en bon accord avec les résultats expérimentaux. Enfin, les effets de fragilisation combinés des réactions d'oxydation et d'hydruration de la gaine ont été étudiés par le biais d'essais de flexion 4 points et par une modélisation mécanique de la rupture.
Informations complémentaires
-
La Fénière, Château de Cadarache - Maison d'hôtes du CEA Cadarache Route de Vinon sur Verdon 13115 Saint Paul Lez Durance
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Valentin GAUTIER
Reconstruction bimodale d'images TEP/IRM assistée par intelligence artificielle
Doctorant : Valentin GAUTIER
Laboratoire INSA : CREATIS - Centre de Recherche en Acquisition et Traitement de l'image pour la Santé
École doctorale : ED160 : Électronique, Électrotechnique, Automatique de Lyon
L'imagerie TEP/IRM est une méthode d'imagerie médicale qui gagne progressivement en popularité. Sa capacité à coupler une image anatomique de haute résolution fournie par l'IRM avec l'information fonctionnelle fournie par la TEP en font un outil prometteur en oncologie ou en neurosciences. Une contrainte majeure de cette technique d'imagerie est sa durée d'acquisition pouvant monter jusqu'à une heure. Diminuer le temps d'acquisition est ainsi un enjeu majeur qui permettrait d'augmenter le confort des patients et augmenter la disponibilité des machines. L'objectif dans cette thèse est de mettre au point de nouvelles méthodes de reconstruction faisant usage de la présence des deux modalités pour obtenir des images d'une qualité standard dans la pratique clinique avec des temps d'acquisitions plus courts. Est ainsi proposée dans un premier temps une méthode de reconstruction TEP guidée par IRM s'appuyant sur un autoencodeur variationnel bimodal pré entraîné sur des données de qualité clinique standard. Celui-ci est utilisé pour contraindre les solutions du problème inverse et permet, à travers son espace latent, d'obtenir une représentation jointe des deux modalités. Cette méthode apparaît robuste au bruit comparée à des méthodes classiques, témoignant ainsi de l'utilisation de l'information de la deuxième modalité pour compenser l'ajout de bruit sur les données. Cette méthode est ensuite étendue à la reconstruction jointe de la TEP et de l'IRM et sont explorées différentes architectures de VAE. Cette étude met notamment en avant un partage de l'information de l'IRM vers la TEP bien supérieur à celui de la TEP vers l'IRM. Finalement, cette thèse explore aussi l'utilisation des récents modèles de diffusion pour résoudre le problème de la reconstruction jointe.
Informations complémentaires
-
Salle de conférence - BU sciences, Domaine de la Doua - 20 avenue Gaston Berger - BP 72215 69622 Villeurbanne Cedex
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de l'Habilitation à Diriger des Recherches en sciences : Adrien PETROV
Contributions à l’étude de problèmes de contact, alliages à mémoire de forme, fluides (in)compressibles et corrosion
[Soutenance publique]
Maître de Conférences : Adrien PETROV
Laboratoire INSA : Institut Camille Jordan (ICJ)
Rapporteurs : Chérif Amrouche, Patrick Ballard, Marius Cocou
Jury : Ionel Sorin Ciuperca, Eduard Feireisl, Arnaud Heibig, Pavel Krejci, Laetitia Paoli.
Civilité | Nom et Prénom | Grade/Qualité | Établissement |
M. |
Amrouche Chérif |
Professeur des Universités |
Université de Pau et des pays de l’Adour |
M. |
Ballard Patrick |
Directeur de Recherches |
Université Pierre et Marie Curie |
M. |
Cocou Marius |
Professeur des Universités |
Université Aix-Marseille |
M. |
Ciuperca Ionel Sorin |
Maitre de conférences |
Université Claude Bernard |
M. |
Feireisl Eduard |
Professeur des Universités |
Institut de Mathématiques de l’Académie des Sciences de la République tchèque |
M. |
Heibig Arnaud |
Professeur des Universités |
INSA-Lyon |
M. |
Krejci Pavel |
Professeur des Universités |
Institut de Mathématiques de l’Académie des Sciences de la République tchèque |
Mme |
Paoli Laetitia |
Professeur des Universités |
Université de Saint-Etienne |
Informations complémentaires
-
INSA Lyon - Bibliothèque Marie Curie - Amphi Emilie du Châtelet - Villeurbanne
Mots clés
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de l'Habilitation à Diriger des Recherches en sciences : Gergely MOLNAR
The role of length scales in material failure
[Soutenance publique]
Chargé de recherche CNRS : Gergely MOLNAR
Laboratoire INSA : LaMCoS
Rapporteurs :
- Samuel Forest (MINES Paristech,
- David Rodney (UCBL),
- Jean-François Molinari (EPFL)
Jury
Civilité | Nom et Prénom | Grade/Qualité |
Établissement |
M. |
FOREST Samuel |
Directeur de Recherche |
MINES Paristech |
M. |
RODNEY David |
Professeur des universités |
Université Claude Bernard Lyon 1 |
M. |
MOLINARI Jean-François |
Full professor |
EPFL |
Mme. |
DE LORENZIS Laura |
Full professor |
ETH Zürich |
M. |
MOËS Nicolas |
Professeur des universités |
UCLouvain |
M. |
GRAVOUIL Anthony |
Professeur des universités |
INSA Lyon |
Informations complémentaires
-
INSA Lyon - Bibliothèque Marie Curie - Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Antonin MONOT
Maintenance prédictive d'un réducteur mécanique par analyse combinée électrique et thermique
Doctorant : Lionel DARUL
Laboratoire : Laboratoire LabECAM
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
Dans le contexte industriel actuel, la fiabilité et la performance des équipements sont des préoccupations majeures. Les transmissions à engrenages sont des éléments essentiels des systèmes mécaniques et sont - pour nombre d’applications industrielles - associées à un moteur électrique. Ces motoréducteurs sont soumis à des contraintes opérationnelles de plus en plus importantes, et leur défaillance peut entraîner des conséquences graves, tant en termes de sécurité que de coûts de maintenance. La maintenance prédictive émerge alors comme une stratégie essentielle afin de garantir leur bon fonctionnement en identifiant les signes avant-coureurs de défaillance et en planifiant de manière optimale les interventions de maintenance. L’objectif de cette étude est d’étudier le potentiel des approches thermique et électrique pour la maintenance prédictive d’un réducteur à engrenages. Afin de répondre au besoin industriel, ces travaux proposent une approche permettant de détecter et localiser des défauts en temps réel en utilisant un nombre limité de capteurs non intrusifs. Un banc d'essai a été développé à partir d'un treuil de l’entreprise REEL International pour étudier le comportement thermique d'un réducteur à quatre étages. Cette étude présente, dans un premier temps, une méthode pour créer un jumeau numérique thermique du réducteur. Un modèle hybride analytique-expérimental est proposé. Sa structure est basée sur l'approche des réseaux thermiques². Une procédure expérimentale est utilisée pour déterminer certains paramètres critiques du modèle, tel que le coefficient de frottement des dentures. Dans un second temps, la capacité de ce jumeau numérique thermique à réaliser la maintenance prédictive du réducteur est étudiée via l’introduction d’un défaut d’hélice et d’un défaut d’écaillage sur un des pignons. Dans un troisième temps, une étude du module du vecteur de Park des courants statoriques du moteur pour la détection des défauts est présentée en complément de l’approche thermique. Il résulte de cette étude que le jumeau numérique thermique est capable de prédire précisément le comportement thermique des composants du réducteur (roulements, carter, huile) en utilisant seulement quelques capteurs thermiques. Celui-ci permet la détection et la localisation d’un défaut géométrique à l’engrènement. L’étude du module de Park démontre quant à elle la pertinence de certains indicateurs ainsi que celle de combiner les deux approches pour la surveillance de la transmission.
Informations complémentaires
-
Salle LI001, ECAM LYON - 40 Mnt Saint-Barthélémy, 69321 Lyon