
Sciences & Société
Soutenance de thèse : Jixiang LI
Fundamental Insights into filled Multi-micro/nanolayer Polymeric Systems: Rheology, Nanofiller Dynamics, Conductivity, and EMI Shielding
Doctorant : Jixiang LI
Laboratoire INSA : IMP - Ingénierie des Matériaux Polymères
École doctorale : ED n°34 ML - Matériaux
Les systèmes polymères intégrant des nanofillers ont suscité l'intérêt des chercheurs depuis des décennies. Les rapports portant sur les impacts des nanofillers sur les propriétés des nanocomposites peuvent être variés et abondants. Cependant, des études plus approfondies se concentrant sur les comportements des nanofillers sous différentes conditions d’écoulement à l’intérieur des polymères restent limitées. Dans cette thèse, des connaissances fondamentales sur les comportements des nanofillers dans des systèmes polymères ayant des structures différentes ont été étudiées. Plus précisément, cette thèse a débuté par l’étude des comportements distincts des nanotubes de carbone multi-parois (MWCNTs), un nanofiller de carbone fonctionnel largement utilisé, dans des polypropylènes avec des structures de chaînes polymères différentes. L’un est un polypropylène à chaîne linéaire (PPC) et l’autre est un polypropylène à chaîne longue ramifiée (LCB). Nous avons mis en évidence les mobilités restreintes des MWCNTs dans le PPH par rapport au PPC en raison de la structure LCB, en imposant un écoulement de cisaillement aux systèmes nanocomposites. La réponse du réseau de MWCNTs, reflétée par des mesures rhéologiques et de conductivité, a confirmé notre hypothèse. Sur la base de ces observations, un nanocomposite polymère à structure en couches a été conçu avec des couches alternées de PPC/MWCNTs et de PPH pur. Il est surprenant de constater que, lors de l’extrusion forcée par coassemblage, une méthode très efficace pour fabriquer des systèmes polymères multicouches, les MWCNTs pouvaient être mieux alignés dans la direction du flux d’extrusion, surtout lorsque le nombre de couches augmentait jusqu’à un certain point. Ce type d’orientation a ensuite été confirmé par des études de rhéologie en extension et de microstructures. Il convient de noter que la mobilité restreinte des MWCNTs par la couche PPH est probablement le facteur clé influençant l’orientation. En revanche, peu d’indices d’orientation des MWCNTs à l’intérieur de systèmes multicouches composés uniquement d’un polymère (LLDPE dans cette thèse) et de MWCNTs, également fabriqués par extrusion forcée, ont été détectés. Les systèmes multicouches électriquement conducteurs se sont révélés être d’excellents matériaux de blindage EMI. Dans cette thèse, les films polymères multicouches nanocomposites conçus ont été testés pour évaluer leur aptitude à être utilisés pour le blindage EMI. Les résultats ont montré que la structure en couches mieux uniformisée et une épaisseur de couche adaptée sont deux points cruciaux influençant les propriétés de blindage EMI. Les découvertes de cette thèse visent à fournir une meilleure compréhension des comportements des nanofillers dans les matrices polymères dans diverses conditions en termes de rhéologie non linéaire, de conductivité et d’autres propriétés physiques. Sur cette base, certaines relations structure-propriété ont été établies. Espérons que cette thèse contribuera à la modélisation rhéologique et à la conception de structures de matériaux fonctionnels à l’avenir.
Informations complémentaires
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Sannem-Ahmed-Salim-Landry SAWADOGO
Constructions modulaire 3D béton : Caractérisations d'un béton fibré et évaluations expérimentale et numérique des structures constitutives d'une cellule représentative
Doctorant : Sannem-Ahmed-Salim-Landry SAWADOGO
Laboratoire INSA : MATEIS - Matériaux Ingénierie et Sciences
École doctorale : ED n°34 ML - Matériaux
Cette contribution vise la validation d'un concept de construction modulaire béton développé par Cubik Home et Francioli. L'approche couple une expérimentation à différentes échelles ainsi que la modélisation numérique. L'étude couvre un large spectre, depuis le matériau béton fibré à haut volume en fibres structurelles, avec sa caractérisation tout au long du processus de maturation, mais aussi l'étude de son comportement au feu, avec la gestion de son éclatement et d'un écaillage limité lors du test au feu réglementaire. Le comportement post-fissuration, avec l'énergie de fissuration Gf, est aussi étudié de façon approfondie au travers de tests réglementaires mais aussi sur la base d'essais plus représentatifs des structures minces ici visées. Une loi de comportement appropriée pour le béton fibré avec prise en compte du comportement post-fissuration a été recalée. Les paramètres du modèle élasto-plastique avec endommagement (CDP) du code Abaqus ainsi déterminés, ont permis de reproduire la réponse de divers éléments de structures constitutifs de ce concept modulaire (dalles et voiles minces nervurés). La problématique des liaisons entre les structures porteuses est aussi investiguée via l'expérimentation, et le dimensionnement des connexions sous traction et sous cisaillement validé. Des essais parfaitement représentatifs sont finalement menés au CSTB pour la partie comportement mécanique et au CERIB pour le comportement au feu selon la courbe normalisée 1S0-834. Ces derniers, réalisés sur des murs et des dalles, ont permis d'évaluer la capacité portante (R), l'étanchéité au feu (E) et l'isolation thermique (1). Les résultats sont concluants et confirment les études préliminaires en laboratoire. Pour finir, l'instrumentation par des accéléromètres d'un module complet et son suivi lors de son transport sur camion, a permis de quantifier les sollicitations induites et de vérifier l'absence de pathologies. Le concept a ainsi été validé en étudiant précisément toutes les étapes du process en ayant recours à une production en usine de préfabrication.
Informations complémentaires
-
Salle de Conférence Bibliothèque Universitaire de Sciences, 503 Rue de la Physique, 69100 Villeurbanne, INSA Lyon
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de l'Habilitation à Diriger des Recherches en sciences : Aurélien Doitrand
Contribution à l'étude de l'amorçage de fissures dans les matériaux fragiles
Maître de conférences : Aurélien Doitrand
Laboratoire INSA : MatéIS
Rapporteurs : Djimédo Kondo (IJLRA, Sorbonne Université), Christophe Bois (I2M, Université de Bordeaux) et Sylvain Drapier (LGF, École des Mines de Saint-Etienne)
Jury :
Civilité |
Nom et Prénom |
Grade/Qualité |
Établissement |
Mr |
Djimédo Kondo |
Professeur des universités |
IJLRA, Sorbonne Université |
Mr |
Christophe Bois |
Professeur des universités |
I2M, Université de Bordeaux |
Mr |
Sylvain Drapier |
Professeur des universités |
LGF, Ecole des Mines de Saint-Etienne |
Mme |
Thouraya Baranger |
Professeure des universités |
LMC2, Université Claude Bernard Lyon I |
Mr |
Julien Réthoré |
Directeur de recherche |
GeM, Universite de Nantes |
Mme |
Nathalie Godin |
Maitre de conférences HDR |
MATéIS, INSA de Lyon |
Mr |
Sylvain Meille |
Professeur des universités |
MATéIS, INSA de Lyon |
Informations complémentaires
-
Amphithéâtre de la bibliothèque universitaire Sciences La Doua Lyon 1 (20 avenue Gaston Berger 69100 Villeurbanne)
Mots clés
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Lanpeng QIANG
Études des propriétés électroniques des matériaux et des nanofils GaAs et AIN/GaN par microscopie à sonde à balayage à mode électrique
Doctorant : Lanpeng QIANG
Laboratoire INSA : INL - Institut des Nanotechnologies de Lyon
École doctorale : n°34 ML - Matériaux
Les structures semi-conductrices de basse dimension, en particulier les nanofils, présentent un fort potentiel d'application pour la nouvelle génération de dispositifs optoélectroniques, tels que les LEDs UV-Cet les cellules solaires. En effet, la relaxation des contraintes liées à la croissance spécifique des nanofils améliore considérablement la tolérance aux désaccords de maille dans les hétérostructures semi-conductrices. La faible densité de défauts des nanotils peut accroître l'efficacité de dopage par impuretés donneuses et acceptrices Étant donné que les dimensions de ces structures de basse dimension sont typiquement de l'ordre de plusieurs dizaines de nanomètres, de nouvelles méthodes de caractérisation et d'analyse de leurs propriétés électriques doivent être développées. Les techniques de microscopie à sonde locale (SPM) reposant sur la microscopie à force atomique (AFM) ont démontré leur utilité pour effectuer des mesures électriques à l'échelle nanométrique, suscitant ainsi un vif intérêt. La présente thèse se concentre sur les techniques SPM basées sur l'AFM, particulièrement la microscopie de résistance d'étalement (ou Scanning spreading resistance microscopy: SSRM), pour caractériser et analyser les propriétés électriques de matériaux semi-conducteurs Ill-V sous forme de nanostructures, notamment les couches fines de GaAs, les nanofils de GaAs et les nanofils de AIN/GaN. Une procédure de traitement de surface a été mise au point, comprenant la planarisation et la coupe en section transversale. La planarisation comporte l'encapsulation des nanofils à l'aide d'un sol-gel de SiO2, puis le polissage permettant d'exposer les nanofils et d'obtenir une surface de mesure plane et lisse adaptée au balayage de l'AFM. Le polissage peut produire un biseau qui autorise la caractérisation de différentes sections longitudinales des nanofils. Afin de mener une étude quantitative dans le GaAs par SSRM, un étalonnage a été réalisé à partir d'une structure en escalier multicouche élaborée par épitaxie par jets moléculaires (MBE). La plage de dopage mesurée par spectrométrie de masse d'ions secondaires (SIMS) s'étend de Sx1016cm-3 à 1019cm-3. Des phénomènes anormaux lors de l'étalonnage ont pu être expliqués en tenant compte de la résistance parallèle parasite des échantillons étalons. Des mesures SSRM ont été réalisées sur des couches épaisses de GaAs, élaborées par épitaxie en phase vapeur aux hydrures (HVPE) (collaboration Institut Pascal à Aubiéres) dans diverses conditions novatrices de croissance.li a été possible de quantifier la concentration en porteurs, comprise entre 4x1016 et 1018cm-3, dans des couches de GaAs dopées au Zn. Une étude similaire a été effectuée sur des nanofils en GaAs non intentionnellement dopés élaborés par croissance sélective (SAG)-HVPE, révélant une concentration résiduelle en porteurs très faible et bien maitrisée de 7x101Scm-3. Ces résultats démontrent l'adéquation de la SSRM à l'analyse en profondeur d couches épaisses ou de nanofils, pour la résurgence de la HVPE. Nous avons étudié de façon systématique par SSRM la distribution du dopage Si de nanofils AIN/GaN, dont la croissance a été réalisée à des températures de cellule de Si comprises entre 800 et 1100°C. Les études menées démontrent une uniformité axiale et radiale du dopage Si dans les nanofils AIN/GaN élaborés par MBE assistée par plasma (PA-MBE) dans les conditions considérées (collaboration CEA Grenoble
/IRIG PHELIQS/NPSC) pour les températures de cellule de Si de 800°C à 1000°C. Les résultats conjoints de la SSRM et de la C-AFM pourraient permettre l'hypothèse que le profil de concentration en porteurs libres est influencé par la formation de centres DX dans l'AIN dopée des nanofils à 1100°C. La microscopie à force piézoréponse (PFM) a révélée la même orientation de polarité de surface. L'analyse SSRM de coupe transversale a montré un dopage homogène axial pour le GaN, l'AIN étant invisibilisé par une réaction d'hydrolyse.
Informations complémentaires
-
Amphithéâtre 1, CPE Lyon, Bâtiment Irène Joliot Curie, 3 rue Enrico Fermi, 69622, Villeurbanne, France
Mots clés
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Morgane LE BOT
Mécanismes de Cristallisation, Déformation et Cicatrisation aux Interfaces dans le PEEK Amorphe et Semi-cristallin : Analyses Microstructurales, Rhéologiques et Mécaniques
Doctorant : Morgane LE BOT
Laboratoire INSA : MATEIS
École doctorale : IMP - Ingénierie des Matériaux Polymères
Le PEEK (poly éther éther cétone) est un polymère thermoplastique semi-cristallin haute performance qui est de plus en plus utilisé dans l'industrie. Grâce à ses excellentes propriétés mécaniques et à ses températures de transition élevées, il constitue un candidat idéal pour les matériaux de structure. Cependant, les origines de ses remarquables performances mécaniques, notamment sa grande ténacité, restent encore partiellement comprises. En outre, les procédés de mise en œuvre peuvent introduire des interfaces qui réduisent les performances mécaniques du produit final par rapport au matériau en volume. Cette thèse vise à approfondir la compréhension fondamentale du PEEK en étudiant ses mécanismes de déformation, son comportement en cristallisation et ses processus de cicatrisation aux interfaces. La dégradation thermique et l’effacement de l’histoire thermique ont été étudiés à l’aide de la calorimétrie différentielle à balayage (DSC), de la rhéologie et de la chromatographie par perméation de gel (GPC), afin de déterminer des conditions de travail optimales garantissant que ni la cristallisation ni la mobilité des chaînes ne soient affectées pendant les mesures. L’étude du comportement de cristallisation isotherme par DSC a souligné l’importance de la cristallisation secondaire dans le PEEK. De plus, l’analyse a révélé des mécanismes distincts gouvernant la cristallisation à froid et la cristallisation à partir de l’état fondu. Les analyses rhéologiques ont complété les résultats obtenus par DSC, permettant d’explorer les premières étapes de la cristallisation, où la sensibilité de la DSC est limitée. Ces analyses ont montré que des mécanismes de cristallisation identiques sont impliqués tant au début qu’au milieu du processus de cristallisation. Les mécanismes de déformation du PEEK ont été explorés en comparant le comportement en traction d’échantillons semi-cristallins et amorphes, afin de clarifier les rôles respectifs des phases amorphes et cristallines. L’utilisation de films a permis d’accéder au régime de durcissement dans les deux matériaux et d’observer directement la formation de bandes de cisaillement et la propagation du col de striction. Les changements de microstructure pendant la déformation ont été analysés par diffraction des rayons X (DRX). Le processus de cicatrisation aux interfaces pendant la cristallisation isotherme a été suivi par des expériences rhéologiques sur des échantillons bi-couche ayant différents taux de cristallinité initiaux. Cette étude visait à comprendre les rôles respectifs des deux mécanismes concurrents gouvernant la cicatrisation des interfaces : la cristallisation et la mobilité des chaînes.
Informations complémentaires
-
Laboratoire INL, Bât Irène Joliot-Curie, 1 rue Enrico Fermi, 69 622 Villeurbanne Cedex
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Xi CHEN
Caractérisation expérimentale, modélisation et simulation de la rupture et de l'émission acoustique associée
Doctorant : Xi CHEN
Laboratoire INSA : MATEIS - Matériaux Ingénierie et Sciences
École Doctorale : n°34 ML - Matériaux
L'établissement d'une corrélation claire entre les caractéristiques du signal d'émission acoustique (EA) et les caractéristiques de la source qui induit la propagation de l'onde dans le matériau est un défi en contrôle non destructif de l'endommagement dans les matériaux. En effet, les caractéristiques du signal sont fortement influencées par le milieu de propagation, la détection du capteur et le système d'acquisition. Il est également difficile de généraliser la validation des approches de classification des signaux d'émission acoustique mesurés et de leur lien avec les différents mécanismes d'endommagement. Les relations établies sont donc principalement qualitatives. La modélisation numérique du processus d'EA permet d'envisager une analyse quantitative. La simulation permet aussi d'accroître la robustesse et la fiabilité de l'application de l'EA. Ce travail vise donc à établir un lien quantitatif entre un signal d'EA mesuré et la source correspondante. Il est basé, d'une part, sur la caractérisation expérimentale de l'EA en tenant compte de l'influence de la géométrie de l'échantillon et du type de capteur ; d'autre part, il se concentre également sur la simulation numérique de l'amorçage de la fissure, en tant que source d'émission acoustique, et de la propagation de l'onde dans l'échantillon. La simulation de la chaîne d'acquisition d'EA comprend la modélisation de la source d'EA, de la propagation de l'onde, de la détection du capteur et du système d'acquisition. Parmi ces parties de modélisation, ce travail se concentre sur (1) la simulation de la source d'EA résultant de l'amorçage de la fissure;
(2) l'étude de l'effet du capteur et de l'effet de l'épaisseur d'un point de vue expérimental ; (3) la simulation des signaux d'EA générés par une rupture de mine de crayon pour étudier l'influence des différentes conditions de simulation, y compris les dimensions de modélisation, les conditions aux limites et l'amortissement du matériau. L'amorçage de la tissure est considéré comme une source d'émission acoustique et modélisé sur la base du critère couplé dynamique. Le critère couplé dynamique est évalué en comparant la prédiction de l'amorçage de la fissure à partir d'un trou circulaire dans des plaques, numériquement et expérimentalement. Plusieurs facteurs, tels que le profil de vitesse de la fissure pendant l'amorçage et la propagation de la fissure, le comportement élastique linéaire ou non linéaire du matériau et la méthode de séparation progressive ou simultanée des nœuds, influencent l'énergie émise pendant la fissuration. Une description précise du processus amorçage et de propagation des fissures est donc importante pour une modélisation fiable des sources d'émission acoustique. Le capteur utilisé joue aussi un rôle clé, car il déforme les signaux dans le domaine temporel et le domaine fréquentiel, ainsi que ses descripteurs. Une procédure axée sur une source unique générée par la rupture d'une mine de crayon est proposée pour réduire l'effet de capteur ainsi que l'effet d'épaisseur afin d'obtenir un ensemble de données générales provenant de plusieurs types de capteurs et de plaques d'épaisseurs différentes. La simulation correspondante est réalisée à l'aide de modèles 2D ou 3D. La simulation numérique nous permet de mettre en évidence l'importance des conditions aux limites et d'identifier le comportement d'amortissement du matériau en comparant les résultats numériques et expérimentaux. L'approche proposée permet de faire un pas en avant dans l'établissement d'un lien quantitatif entre la source d'EA et les caractéristiques du signal mesuré.
Informations complémentaires
-
Amphithéâtre Turing, Bâtiment Pierre de Fermat, INSA-Lyon, 4 Allée Lumière, 69100, Villeurbanne
Mots clés
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de l'Habilitation à Diriger des Recherches en sciences : Adina-Nicoleta LAZAR
Développement d’outils pour le diagnostic et le traitement des maladies neurodégénératives
Maître de conférences des universités (MCU) : Adina-Nicoleta LAZAR
Laboratoire INSA : LaMCoS
Composition du jury :
Rapporteurs : Elmira Arab-Tehrany, Marc Dhenain, Sophie Lecomte
Jury :
Civilité |
Nom et Prénom |
Grade/Qualité |
Établissement |
Mme |
ARAB-TEHRANY Elmira |
Rapporteur |
Université de Lorraine |
Mme |
LECOMTE Sophie |
Rapporteur |
CBMN, Université de Bordeaux |
M. |
DHENAIN Marc |
Rapporteur |
MIRCen, Université Paris-Saclay |
Mme |
BERNOUD-HUBAC Nathalie |
Examinateur |
INSA Lyon |
Mme |
MANITI Ofelia |
Examinateur |
Université Lyon 1 |
M. |
DELATOUR Benoît |
Examinateur |
ICM, Sorbonne Université, Paris |
Informations complémentaires
-
INSA Lyon - Bat. IMBL - Salle Mc Whinnie - Villeurbanne
Mots clés
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Marianne SION
Preuve de concept d'une pompe à chaleur élastocalorique pour la réfrigération à température proche de la pièce utilisant du caoutchouc naturel
Doctorante : Marianne SION
Laboratoire INSA : CETHIL - Centre d'Énergétique et de Thermique de Lyon
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
De nos jours, la plupart des systèmes de réfrigération se basent sur la compression de gaz. L'utilisation de ces gaz compressés a révélé des problèmes, notamment une dégradation de la couche d'ozone et un potentiel de réchauffement climatique élevé. Plusieurs générations de gaz réfrigérant se sont succédées et ont été finalement bannies à cause de leur toxicité, de problèmes de sécurité ou de leur impact négatif sur l'environnement. Une alternative est l'utilisation de matériaux caloriques qui peuvent être utilisés pour faire de la réfrigération liquide-solide avec des systèmes régénératifs ou de la réfrigération solide-solide en utilisant des systèmes de réfrigération à étage unique. Les matériaux caloriques sont connus pour être sujets à des variations de températures lorsqu'ils sont soumis à un chargement externe. Ces matériaux sont divisés en quatre catégories : magnétocalorique, électrocalorique, barocalorique et élastocalorique, suivant le type de chargement, champ magnétique, champ électrique, pression ou contrainte uniaxiale, respectivement. Les matériaux élastocaloriques sont divisés en deux catégories, les alliages à mémoire de forme, tels que les alliages de Nickel Titane (Ni-Ti) et les polymères, tels que le caoutchouc naturel. Les polymères n'ont pas été beaucoup étudiés pour la conception de système de réfrigération élastocalorique. Cependant, le caoutchouc naturel est un matériau intéressant pour la réfrigération solide car il est peu coûteux et a un faible impact environnemental. L'utilisation du caoutchouc naturel, qui peut être considéré comme un matériau isolant thermiquement, représente un défi. Le but de ce travail est de mieux comprendre comment le caoutchouc naturel peut être un bon candidat pour la réfrigération solide pour un système de réfrigération à étage unique. Il est nécessaire de comprendre quels sont les paramètres clés les plus importants pour obtenir les meilleures différences de température et puissance de refroidissement. Les principales questions scientifiques se posant sont sur la possibilité d'obtenir une meilleure compréhension des mécanismes de transfert et de déterminer si une mise à l'échelle du système de réfrigération peut permettre d'obtenir de plus larges différences de température et de plus hautes puissances de refroidissement. Afin de répondre à ces questions, cette thèse se concentre sur le développement et l'évaluation des performances d'un système de réfrigération élastocalorique utilisant du caoutchouc naturel. Le Chapitre 1 de ce travail présentera le contexte et l'état de l'art sur les différents effets caloriques et certains systèmes de réfrigération utilisant ces effets. Dans le Chapitre 2, un système de réfrigération à étage unique à 4 temps est présenté et testé, afin de mieux comprendre les mécanismes de transfert de chaleur. Dans le Chapitre 3, une comparaison de neuf échantillons de caoutchouc naturel est présentée, afin d'étudier l'impact de l'épaisseur et de la composition des matériaux sur les performances du système. Dans le Chapitre 4, un deuxième système expérimental est étudié. C'est un système de réfrigération à 2,5 temps, qui a pour spécificité de mettre le caoutchouc en contact avec l'échangeur chaud lorsqu'il est toujours en cours de chargement. Dans le Chapitre 5, un modèle analytique est développé et utilisé afin d'étudier le transfert de chaleur entre le caoutchouc naturel et les échangeurs de chaleur. Finalement, une conclusion générale pour rappeler les principaux résultats de la thèse et les perspectives d'amélioration du système de réfrigération élastocalorique.
Informations complémentaires
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Nathan REYDET
Étude électrochimique couplée à la tomographie à rayons X des impuretés dans les électrodes négatives de lithium métal.
Doctorant : Nathan REYDET
Laboratoire : MATEIS - Matériaux Ingénierie et Sciences
École doctorale : ED 34 ML - Matériaux
Le développement des véhicules électriques (VE) nécessite des batteries avec une densité énergétique accrue. Bien que les batteries Li-ion dominent le marché, elles atteignent progressivement leurs limites chimiques. Le lithium métal à l'électrode négative représente une alternative de choix pour augmenter significativement la densité énergétique. Cependant, son utilisation reste complexe en raison de son comportement encore mal compris, notamment la formation d'inhomogénéités de dépôt et d'oxydation, qui déstabilisent l'interface électrolyte/lithium au cours du cyclage. Cette thèse s'appuie sur un couplage entre une analyse détaillée de la microstructure du lithium métal et une étude électrochimique réalisée sur des cellules symétriques Li/Electrolyte/Li et des batteries Li/Electrolyte/LFP en configuration pouch-cell. L'objectif est de mieux comprendre les mécanismes de dégradation du lithium qui limitent la durée de vie des batteries. Une attention particulière a été portée à la population des inclusions et des précipités dans la microstructure du lithium. En combinant tomographie X et microscopie optique, cette thèse a caractérisé en détail ces microstructures, notamment les inclusions identifiées comme des cristaux d'hydrure de lithium (LiH). Ces analyses ont révélé un phénomène de fracturation des inclusions au cours du laminage, selon le rapport entre la taille moyenne des inclusions et l'épaisseur du laminé. Une évolution significative de la taille et de la fraction volumique de LiH a également été mise en évidence au cours du vieillissement du lithium métal, selon les conditions de stockage. Un modèle de maturation et d'absorption d'hydrogène est proposé. Les différents lots de lithium, présentant une microstructure différente et bien caractérisée, ont été testés dans des batteries en conservant systématiquement le même électrolyte et la même positive. Ces études ont mis en lumière les liens entre la taille, la densité volumique et la fraction volumique des inclusions, et la dynamique des mécanismes de dégradation. Il a été démontré que la taille des inclusions à l'interface Li/électrolyte est le facteur le plus critique, présentant une corrélation directe avec l'intensité des courants de courts-circuits. Un procédé de purification a également été développé pour réduire la présence des inclusions. Ce procédé a permis de réduire partiellement ces inclusions, mais a également modifié profondément la microstructure du lithium, affectant notablement la distribution des précipités et des inclusions. Les résultats de cette thèse amènent une compréhension approfondie des mécanismes de dégradation du lithium métal dus aux inclusions de LiH et mettent en lumière des perspectives pour optimiser la qualité de ce métal utilisé dans les batteries. Ces travaux soulignent également les défis à relever pour son utilisation généralisée et optimisée dans des systèmes électrochimiques avancés avec de faibles épaisseurs d'électrode.
Informations complémentaires
-
Salle André Rassat, 470 rue de la Chimie - Bâtiment André Rassat / Chimie E 38400 SAINT MARTIN D'HERES
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025Festival Pop’Sciences
Du 16 au 18 mai
Sciences & Société
Soutenance de thèse : Audrey MICHON
Développement d'un modèle éléments finis thermomécanique macroscopique pour l'estimation de l'impact du meulage sur les contraintes résiduelles dans les assemblages soudés.
Doctorante : Audrey MICHON
Laboratoire : LAMCOS - Laboratoire de Mécanique des Contacts et des Structures
École doctorale : ED 162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
Le meulage, une opération d'enlèvement de matière utilisée dans diverses industries, en particulier dans le secteur nucléaire (EDF), est principalement appliqué aux composants soudés. Ce procédé, impliquant un outil de meulage composé de liants et de particules abrasives, fait partie des procédés de parachèvement pour améliorer la qualité des pièces soudées. Cependant, la nature manuelle du meulage introduit une variabilité en raison de facteurs tels que le type d'outil, le savoir-faire de l'opérateur, les matériaux utilisés et les paramètres opératoires de meulage. De plus, le meulage influence les contraintes résiduelles près de la surface traitée et, suivant la nature des matériaux, peuvent favoriser les mécanismes de fissuration par Corrosions Sous Contraintes (CSC). Cette thèse examine comment le meulage modifie l'état des contraintes résiduelles, façonné par l'historique thermomécanique du composant. Le meulage peut introduire de nouvelles contraintes résiduelles. Pour comprendre l'impact des paramètres de meulage sur ces contraintes, nous proposons une chaîne numérique complète, validée par des essais sur un banc de meulage semi-automatique développé par Framatome. L'objectif est d'évaluer l'interaction complexe entre les paramètres opératoires (procédé) du meulage et l'état des contraintes résiduelles dans les composants soudés. Le défi dans la modélisation du meulage provient des nombreux phénomènes physiques en jeu, allant de l'enlèvement de matière aux interactions thermomécaniques au cours du contact outil-pièce. Pour s'aligner sur les exigences d'EDF, une approche macroscopique a été adoptée, adaptée pour analyser les effets du meulage à l'échelle du composant. Notre recherche a conduit au développement d'un modèle tridimensionnel de meulage utilisant Code_Aster, le code open source d'éléments finis développé par EDF. Le procédé de meulage est simulé comme une charge thermomécanique équivalente, pré-calculée en utilisant un code de contact semi-analytique interne ISAAC développé au LaMCoS. Ces simulations couvrent plusieurs étapes successives d'enlèvement de matière. Pour valider notre modèle, nous avons effectué des essais sur une maquette soudée pour anticiper l'impact du meulage sur les contraintes résiduelles des soudures. Les résultats obtenus permettent non seulement de montrer l'effet du meulage sur les soudures, en termes de contraintes résiduelles, mais aussi de montrer la capacité du modèle à reproduire les tendances observées expérimentalement.
Informations complémentaires
-
Salle 406-00-39 - Mary Alice McWHINNIE (IMBL), 13 Av. Jean Capelle 0, 69100 Villeurbanne