Recherche

28 fév
28/fév/2023

Recherche

« Les entrailles de la Terre sont un puits de défis scientifiques »

Depuis début février, le sud de la Turquie et le nord de la Syrie sont en proie à des évènements sismiques violents. Le territoire, placé sur trois failles, a grondé si intensément que les secousses ont été ressenties dans tout le Moyen-Orient, faisant des dégâts humains et matériels désastreux. Le caractère exceptionnel des tremblements de terre a interrogé les scientifiques des quatre coins du globe. 

Guilhem Mollon est maître de conférence au département génie mécanique et chercheur au LaMCos. En parallèle de ses travaux au sein de l’équipe Tribologie et Mécanique des Interfaces (TMI), il cherche à comprendre les lois de la physique qui régissent les glissements entre les plaques tectoniques. Zoom sur l’un des nombreux domaines impliqués dans l’étude des entrailles de la Terre : la mécanique des failles sismiques.

Guilhem MollonLes territoires turcs et syriens ont récemment subi plusieurs tragiques épisodes sismiques, faisant plusieurs milliers de victimes. Que s’est-il passé sous ces terres pendant le premier en date ?
C’est l’une des grandes difficultés de l’étude des séismes : chaque évènement est un cas particulier. La Turquie est un site sismique connu depuis longtemps, reposant sur deux grandes failles ; la faille nord-anatolienne qui traverse toute la Turquie jusqu’à Istanbul, puis la faille est-anatolienne, en dessous, qui atteint un point triple. L'épisode du début du mois de février1 a été un cas particulier, car deux séismes de magnitude comparable ont sévi. En temps normal, un séisme peut être précédé de foreshocks, des tremblements annonciateurs, et suivi de répliques, moins intenses que les secousses principales. Cette fois, il y a eu deux séismes de magnitude comparable (7,8 et 7,5), ce qui indique que le deuxième séisme n’est probablement pas une réplique du premier. Chaque évènement est intervenu sur deux failles différentes à quelques heures d’intervalle. Les failles nord et est anatoliennes sont dites « transformantes » : elles forment le bord de plaques qui glissent l’une sur l’autre latéralement, libérant de l’énergie, qui se transformera ensuite en ondes sismiques. C’est tout ce que je suis en mesure d’expliquer sur le contexte géologique de ces évènements particuliers, car je ne suis pas sismologue de terrain. Il existe divers champs d’études de l’activité sismique. En tant qu’ingénieur tribologue, je m’intéresse au phénomène de glissement dans la roche. 

 

Les principales structures tectoniques autour de la plaque anatolienne (Source : Wiki CC– Mikenorton)

Les principales structures tectoniques autour de la plaque anatolienne
​ (Source : Wiki CC– Mikenorton)

 

Comme vous le mentionnez, des communautés scientifiques différentes travaillent sur des évènements sismiques. Comment ces phénomènes et risques naturels sont-ils étudiés ?
La communauté la plus connue sur le domaine est certainement celle des sismologues qui travaillent essentiellement sur les signaux, mesurent les ondes et établissent des propriétés de la source émettrice. Chez les observateurs de la Terre, il y a également les géodésiens qui étudient les mouvements de très grande taille, sur des temps longs. Ensuite, le génie civil s’intéresse aux impacts des séismes sur les populations et aux risques sur les infrastructures humaines. Et puis, il y a la vision mécanicienne qui comporte deux aspects : la théorie et la simulation expérimentale. C’est la communauté à laquelle j’appartiens : je tente de comprendre chaque mouvement d’un tremblement de terre, à petite échelle. Pour caricaturer, j’observe des sandwichs de roches minérales en glissement et j’en réalise la modélisation pour inférer des propriétés et des comportements. Les séismes sont souvent produits par des mouvements de plaques tectoniques. Dans de nombreux cas, les failles se verrouillent, accumulent de l’énergie mécanique au cours des décennies, et cèdent d’un coup. Mais certains segments glissent paisiblement en permanence et ne provoqueront jamais de séismes. Et d’autres failles accumulent tellement d’énergie que le début d’un évènement sismique produit suffisamment de chaleur pour que la roche entre en fusion, facilitant encore plus le glissement ! Dans tous les cas, pour comprendre ces phénomènes, il faut les étudier d’un peu plus près, en zoomant.

Vous étudiez les lois de frottement des failles à petite échelle, au moyen d’expérimentation en laboratoire et grâce à la modélisation. Qu’apporte la modélisation numérique ?
Pour étudier une faille sismique, qui fait parfois plusieurs centaines de kilomètres de long, on ne peut pas se permettre de récolter des carottes de roche à dix mètres de profondeurs tous les cinq mètres. Il faut être capable de généraliser. Pour ma part, je ne travaille pas sur des cas particuliers afin de conserver une vision générale, mais je sais que de nombreuses équipes dans le monde construisent des modèles de failles de très grandes tailles, tournant sur les ordinateurs les plus puissants du monde. Elles étudient toutes les données, avant, pendant et après le séisme pour fabriquer des modèles. Mais seules les plus iconiques et les mieux instrumentées des failles ont droit à ce genre de modélisation, comme celle de San Andreas ou de Sumatra. Mon travail se place du côté de la simulation locale : j’essaie de reproduire, grâce à des modèles numériques à l’échelle du millimètre, le détail de chaque mouvement de la roche. On appelle ça des séismes de laboratoire. Grâce à un code de calcul que j’ai développé et qui s’adapte autant aux frottements des pneus sur la route qu’aux glissements des plaques tectoniques, je tente de reproduire numériquement ce qui est observé et mesuré expérimentalement. Toutes ces données ainsi partageables à l’ensemble de la communauté, nous permettent d’écrire des lois de frottements, applicables à plus grande échelle, qui offriront de nouvelles perspectives à l’étude des séismes. 

La tribologie s’attache à étudier les frottements mais aussi l’usure. Existe-t-il un phénomène similaire lorsque des plaques tectoniques glissent entre-elles ?
On aurait tort de penser que les parois des failles sont lisses et propres, effectivement. En glissant, les plaques peuvent arracher de la matière rocheuse, remplissant la faille d’une matière poudreuse appelée « gouge », formant par la suite une couche granulaire. Plus la faille se remplit, plus les deux parois de roches, protégées par cette couche, sont éloignées l’une de l’autre ; un équilibre peut se créer, mais la loi de frottement s’en trouve forcément modifiée. L’usure est une donnée mécanique très intéressante : comprendre comment elle est générée ou la façon dont elle modifie les couches rocheuses est au cœur de nos problématiques. Les roches sont vivantes : dans 400 ans, au prochain séisme majeur en un certain lieu, cette poudre, provoquée par l’usure, se sera peut-être recimentée, provoquant de nouveaux phénomènes physiques et mécaniques. C’est d’ailleurs l’une des raisons qui empêche à tout scientifique sérieux de prétendre prédire les séismes. L’observation scientifique de ces évènements n’a pas plus de 200 ans, alors que les plus gros séismes ont des périodes de retour typiques de 100 à 1000 ans : comment prédire un évènement dont on n’a observé de mémoire d’Homme, au maximum, qu’une ou deux occurrences ? Aujourd’hui, malgré la somme des efforts déployés, cette communauté scientifique ambitionne seulement de comprendre les phénomènes, mais pas encore d’en faire la prédiction. Les entrailles de la Terre sont un puits de défis scientifiques.

 

Illustration d’un sandwich de roche (source : thèse de Jérôme Aubry, « Séismes au laboratoire : friction, plasticité, et bilan énergétique », 2019)

Illustration d’un sandwich de roche (source : thèse de Jérôme Aubry,
« Séismes au laboratoire : friction, plasticité, et bilan énergétique », 2019)

 

[1] : Depuis la rédaction de cet article, les territoires turcs et syriens ont subi de nouvelles secousses, le 20 février 2023. La province de Malatya, dans le sud-est de la Turquie, a également été frappée par une réplique du séisme du 6 février, ce lundi 27 février 2023.