Évènements

23 mai
23/05/2024 09:30

Sciences & Société

Soutenance de thèse : Camille ZOUDE

Formulation, élaboration et caractérisation de géopolymères poreux pour une application de stockage d'énergie

Doctorante : Camille ZOUDE

Laboratoire INSA : MATEIS

École doctorale : ED34 : Matériaux de Lyon

Dans le contexte actuel, marqué par l'importance croissante de la gestion de l'énergie, les systèmes de stockage d'énergie thermochimique se révèlent être prometteurs, notamment ceux combinant un matériau hôte poreux avec des sels hygroscopiques.
Ces systèmes, de haute densité énergétique, reposent sur une réaction renversable : la déshydratation est endothermique et l’hydratation est exothermique. Les géopolymères sont des candidats prometteurs comme matériaux hôtes en raison de leurs propriétés mécaniques, leur facilité de mise en œuvre et leur faible coût. Toutefois, leur porosité nécessite une optimisation pour l’application visée.
À cet effet, trois approches sont étudiées ici : la fabrication additive (Direct Ink Writing), le moussage chimique, et la combinaison des deux. Ces approches nécessitent un important travail de formulation, notamment par l’ajout d’additifs pour adapter leur rhéologie au processus d’extrusion et pour générer une porosité homogène. Sans modifier la cinétique de prise, leur introduction permet la formation d’une porosité contrôlée, atteignant jusqu’à 71 % par moussage chimique. La combinaison de robocasting et de moussage direct plafonne la porosité totale à 65 %, en raison d’une densification des filaments lors de l’extrusion. Les performances mécaniques des échantillons sont évaluées en fonction de leur porosité et des conditions dans lesquelles ils ont été conservés (humidité et température).
L’introduction du sel dans le géopolymère entraîne la formation de composés, par réaction du sodium avec le sel, nuisant aux propriétés thermiques. Cette formation est limitée grâce à l’ajustement du protocole de fabrication. Les propriétés thermiques des composites, évaluées à l’aide de tests dynamiques sur un banc thermique, montrent la capacité des composites à stocker de l’énergie à la fois par sorption physique et chimique. Cependant, des travaux plus approfondis sont nécessaires pour optimiser la répartition du sel et la distribution des diamètres d’accès aux pores dans les géopolymères.