
Sciences & Société
Soutenance de thèse : Antonin MONOT
Maintenance prédictive d'un réducteur mécanique par analyse combinée électrique et thermique
Doctorant : Lionel DARUL
Laboratoire : Laboratoire LabECAM
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
Dans le contexte industriel actuel, la fiabilité et la performance des équipements sont des préoccupations majeures. Les transmissions à engrenages sont des éléments essentiels des systèmes mécaniques et sont - pour nombre d’applications industrielles - associées à un moteur électrique. Ces motoréducteurs sont soumis à des contraintes opérationnelles de plus en plus importantes, et leur défaillance peut entraîner des conséquences graves, tant en termes de sécurité que de coûts de maintenance. La maintenance prédictive émerge alors comme une stratégie essentielle afin de garantir leur bon fonctionnement en identifiant les signes avant-coureurs de défaillance et en planifiant de manière optimale les interventions de maintenance. L’objectif de cette étude est d’étudier le potentiel des approches thermique et électrique pour la maintenance prédictive d’un réducteur à engrenages. Afin de répondre au besoin industriel, ces travaux proposent une approche permettant de détecter et localiser des défauts en temps réel en utilisant un nombre limité de capteurs non intrusifs. Un banc d'essai a été développé à partir d'un treuil de l’entreprise REEL International pour étudier le comportement thermique d'un réducteur à quatre étages. Cette étude présente, dans un premier temps, une méthode pour créer un jumeau numérique thermique du réducteur. Un modèle hybride analytique-expérimental est proposé. Sa structure est basée sur l'approche des réseaux thermiques². Une procédure expérimentale est utilisée pour déterminer certains paramètres critiques du modèle, tel que le coefficient de frottement des dentures. Dans un second temps, la capacité de ce jumeau numérique thermique à réaliser la maintenance prédictive du réducteur est étudiée via l’introduction d’un défaut d’hélice et d’un défaut d’écaillage sur un des pignons. Dans un troisième temps, une étude du module du vecteur de Park des courants statoriques du moteur pour la détection des défauts est présentée en complément de l’approche thermique. Il résulte de cette étude que le jumeau numérique thermique est capable de prédire précisément le comportement thermique des composants du réducteur (roulements, carter, huile) en utilisant seulement quelques capteurs thermiques. Celui-ci permet la détection et la localisation d’un défaut géométrique à l’engrènement. L’étude du module de Park démontre quant à elle la pertinence de certains indicateurs ainsi que celle de combiner les deux approches pour la surveillance de la transmission.
Informations complémentaires
-
Salle LI001, ECAM LYON - 40 Mnt Saint-Barthélémy, 69321 Lyon
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Julien MANNAH
Étude du comportement des plateformes en sol traité sur inclusions rigides : approches expérimentales et numériques
Doctorant : Julien MANNAH
Laboratoire INSA : GEOMAS - Géomécanique, Matériaux, Structures
École doctorale : ED162 : MEGA de Lyon (Mécanique, Énergétique, Génie civil, Acoustique)
La technique de renforcement des sols par inclusions rigides (IR) a connu un développement rapide au cours des dernières années. Cette technique combine des inclusions rigides verticales traversant la couche de sol compressible et une plateforme de transfert de charge (PTC) installée entre l'ouvrage et les inclusions. Ces éléments transfèrent la charge vers des horizons porteurs en pied d'inclusions sans surcharger la couche de sol compressible. L'utilisation des plateformes de transfert de charge granulaires est courante dans les projets de renforcement du sol par inclusions rigides. Cependant, l'exploitation des ressources naturelles a fortement augmenté due à la croissance démographique et l'évolution du marché de la construction, d'où la nécessité de trouver des solutions alternatives afin de limiter la pression sur les ressources en matériaux granulaires. Dans ce contexte, un traitement de la couche supérieure du sol en place peut être envisagé afin de limiter le sol d'apport. Le projet national ASIRI « Amélioration des sols par inclusions rigides » a été mené en France entre 2005 et 2011 pour proposer des règles de mise en œuvre et de dimensionnement du renforcement de sol par IR. En 2019, un nouveau projet national (ASIRI+) a été initié pour compléter les recommandations ASIRI (2012) sur des sujets insuffisamment traités tel que celui des PTC en sol traité. Les travaux de la présente thèse intitulée « Étude du comportement des plateformes en sol traité sur inclusions rigides : Approches expérimentales et numériques » s'intègrent dans le cadre du projet national ASIRI+ et ont pour objectif d'apporter des éléments de compréhension sur les mécanismes développés au sein des plateformes sur IR et de proposer de nouvelles règles de dimensionnement. Les moyens mis en œuvre sont expérimentaux avec des essais en laboratoire à échelle 1, des caractérisations des différents traitements et des ouvrages réels instrumentés. Ces moyens sont aussi numériques par la modélisation numérique de ces renforcements de sol calibrée sur les résultats des expérimentations. Enfin, un volet environnemental complète cette étude avec une analyse de cycle de vie (ACV) qui prend en compte les impacts environnementaux des PTC granulaires et traitées. Les essais de caractérisation en laboratoire montrent bien l'effet du traitement sur les résistances mécaniques du sol traité. Des essais de résistance à la compression, flexion, traction (essai brésilien) et au cisaillement (essais triaxiaux) sont réalisés pour évaluer les performances mécaniques du sol traité. Plusieurs essais à échelle 1 permettent de tester le comportement des PTC en sol traité sur inclusions rigides où un comportement assimilable à celui d'une dalle est observé. Deux modes de rupture « poinçonnement et flexion » sont observés dans ces essais. L'instrumentation montre que le transfert de charge dans les PTC traitées est immédiat contrairement au cas des PTC granulaires où les mécanismes de transfert de charge sont un peu plus progressifs. L'effet de la présence d'une plateforme de travail sous les PTC traitées est aussi évalué dans ces essais. Le modèle numérique développé permet d'évaluer à travers une étude paramétrique l'effet de différents paramètres sur l'efficacité en contrainte et en tassement du système. Le schéma du cône de cisaillement (ASIRI, 2012) représente le mieux les mécanismes de transfert de charge dans la PTC traitée. La diffusion de la contrainte est assimilée à un tronc de cône, issu de la tête de l'inclusion et formant un angle <p par rapport à la verticale. Cela a été vérifié numériquement, analytiquement et expérimentalement. L'ACV réalisée prend en compte les effets environnementaux des PTC granulaires et traitées et montre qu'une analyse multicritère est requise pour chaque projet de renforcement du sol afin d'évaluer l'impact environnemental global.
Informations complémentaires
-
Amphithéâtre Clémence Royer, Bâtiment Jacqueline Ferrand, INSA Lyon, 31 Av. Jean Capelle 0, 69100 Villeurbanne
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Maryne FEBVRE
Intelligence artificielle pour optimiser le contrôle distribué des vibrations : Application aux réseaux de transducteurs dans les structures intelligentes.
Doctorante : Maryne FEBVRE
Laboratoire INSA : LAMCOS - Laboratoire de Mécanique des Contacts et des Structures
École doctorale : ED162 : MEGA de Lyon (Mécanique, Énergétique, Génie civil, Acoustique)
Les matériaux intelligents, comme les transducteurs piézoélectriques, sont devenus essentiels en ingénierie moderne pour des applications telles que le contrôle des vibrations, la récupération d'énergie et la propagation des ondes. Ces éléments multiphysiques permettent de développer des structures intelligentes adaptatives, capables d'interagir avec leur environnement, et de résoudre des problématiques liées à l'instabilité et à la fatigue des matériaux. Cependant, l'optimisation de ces systèmes devient de plus en plus complexe à mesure que le nombre de transducteurs et de paramètres ajustables augmente. Cette thèse explore l'optimisation du contrôle des vibrations dans les structures intelligentes à l'aide de l'apprentissage par renforcement profond (DRL pour Deep Reinforcement Learning). Plusieurs lois de contrôle actif ou passif sont appliquées aux transducteurs piézoélectriques. Le réglage de ces lois par DRL est comparé à des méthodes d'optimisation traditionnelles telles que le simplex et les algorithmes génétiques. L'efficacité est évaluée en termes d'atténuation des vibrations, de stabilité structurelle et de performance de calcul. Des analyses modales, à la fois numériques et expérimentales, sont effectuées pour valider la faisabilité du contrôle sur diverses structures, allant de modèles unidimensionnels basés sur des éléments finis à des réseaux complexes de transducteurs. Les résultats mettent en évidence l'efficacité du DRL pour ajuster des lois de contrôle en boucle fermée multi paramètres tout en tenant compte de fonction d'optimisation non linéaires incluant des contraintes de stabilité. Cependant, des défis tels que l'aléa dans l'entraînement et la divergence sont surmontés grâce à des stratégies basées sur la mémoire, renforçant la robustesse et l'adaptabilité aux variations environnementales. Ce travail fait progresser les méthodes basées sur l'intelligence artificielle pour le contrôle des structures intelligentes distribuées, établissant un lien entre les domaines de l'intelligence artificielle et des matériaux adaptatifs.
Informations complémentaires
-
Amphithéâtre Clémence Royer, Bâtiment Jacqueline Ferrand, INSA Lyon, 31 Av. Jean Capelle 0, 69100 Villeurbanne
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Elias RECHRECHE
Analyses expérimentales et numériques du comportement des accouplements à ressort en conditions quasi-statiques et dynamiques
Doctorant : Elias RECHRECHE
Laboratoire INSA : LAMCOS - Laboratoire de Mécanique des Contacts et des Structures
École doctorale : ED162 MEGA de Lyon (Mécanique, Energétique, Génie civil, Acoustique)
Les travaux de thèse ont été effectués grâce à un financement CIFRE dans le cadre d'une collaboration entre l'entreprise CMDgears et le Laboratoire de Mécanique des Contacts et des Structures (LaMCoS UMR CNRS 5259) de l'INSA de Lyon. Les accouplements à ressorts sont des éléments de transmission connus pour leur flexibilité torsionnelle et leur capacité à compenser les déflexions thermiques et les désalignements entre les arbres. Ils sont utilisés comme solutions polyvalentes pour relier les arbres dans les transmissions à fortes charges, du fait de leur capacité à atténuer les vibrations potentiellement nuisibles. Cependant, malgré cet intérêt reconnu, la littérature sur le sujet reste peu abondante. L'objectif principal de ces travaux est de permette une analyse fine du comportement statique et dynamique de ce composant. Pour cela, un modèle tridimensionnel complet d'accouplements à ressorts a été développé intégrants d'éventuels écarts entre moyeux. Cet outil de simulation permettra l'amélioration des caractéristiques dynamiques de ces accouplements par rapport aux exigences de plus en plus sévères des machines industrielles. Ces accouplements se composent d'un ressort en contact avec les dents des moyeux, qui possèdent un bombé longitudinal, permettant ainsi de relier les arbres d'entrée et de sortie, même en cas de désalignement. Un boîtier englobant le ressort et les moyeux est présent autour de l'accouplement permettant d'encapsuler le lubrifiant tout en maintenant le ressort dans les directions radiale et axiale. En conséquence, une stratégie de modélisation hybride, combinant des éléments finis et des éléments à paramètres concentrés, est proposée pour prendre simultanément en compte les échelles globale (arbres/moyeux/boîtiers) et locale (contacts). Dans ce cadre, le ressort est représenté par une série de segments, modélisés à l'aide d'éléments de poutre de Timoshenko. Parallèlement, les moyeux sont traités comme des solides rigides, mobiles dans l'espace. Les interactions de contact entre les dents des moyeux et le ressort sont, quant à elles, modélisées à l'aide de fondations élastiques de Winkler.
Enfin, le boîtier est modélisé par des éléments de raideur en translation introduits entre la base de chaque boucle du ressort et un point de fixe du moyeu. À chaque pas de temps, les problèmes de contact et l'intégration des équations du mouvement du système complet sont traités simultanément afin de tenir compte des interactions possibles entre les échelles locales et globales. Un ensemble de résultats de simulation sont présentés, mettant en évidence le comportement des accouplements à ressorts dans des conditions de fonctionnement réalistes. Il est démontré que ces accouplements présentent un comportement torsionnel raidissant, causé par le déplacement sous charge des zones de contact entre le ressort et les moyeux. Dans le cas de moyeux désalignés reliés par plusieurs ressorts, la raideur torsionnelle de l'accouplement varie avec la position angulaire, générant ainsi des excitations paramétriques qui contribuent à la dynamique du système. En présence d'une excitation extérieure dont la fréquence varie, la réponse dynamique présente des sauts d'amplitudes, caractéristique d'un système non-linéaire. Parallèlement, un banc d'essai expérimental a été spécialement conçu pour permettre des comparaisons avec le comportement simulé. Ce dispositif a notamment mis en évidence l'importance du jeu axial entre le ressort et le boîtier. L'analyse des résultats montre la capacité du modèle à simuler de manière satisfaisante les réponses temporelles et fréquentielles de l'accouplement.
Informations complémentaires
-
Amphithéâtre Marc Seguin, 27 avenue Jean Capelle 69100 Villeurbanne
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Thomas LHERMITTE
Comportement non-linéaire des pieux sous séisme : Développement d'un élément fini biphasique
Doctorant : Thomas LHERMITTE
Laboratoire INSA : GEOMAS - Géomécanique, Matériaux, Structures
École doctorale : ED 162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
L'interaction entre le sol et la structure est déterminante pour le comportement sismique des ouvrages fondés sur pieux. Elle implique à la fois le comportement du sol, de la fondation et de la superstructure. L'échelle du problème est donc significative. Prendre en compte les non-linéarités lors du dimensionnement nécessite des modèles détaillés. Une approche de modélisation directe peut s'avérer coûteuse en temps de calcul ainsi qu'en mémoire. Bien que des méthodes simplifiées existent, certaines hypothèses peuvent être limitantes lorsqu'il s'agit de prendre en compte simultanément : les non-linéarités matérielles se développant dans le sol et dans la fondation, l'effet d'interaction de groupe de pieux, et des stratigraphies hétérogènes. L'objectif de ce travail est de condenser les non-linéarités du sol et du pieu tout en conservant une description de ces non-linéarités dans la hauteur du pieu. La non-linéarité du sol est condensée à l'interface entre le sol et le pieu, matérialisée par la fibre moyenne de ce dernier, tandis que la non-linéarité du pieu est modélisée par une approche multi-fibres. L'outil développé prend la forme d'un nouvel élément fini innovant utilisant une approche dite« biphasique ». Cette dernière permet de décrire une interaction continue entre la phase "sol" et la phase "pieu". Les non-linéarités étant condensées au sein de l'élément fini biphasique, le comportement du sol dans un groupe de pieux peut être intégré au moyen des matrices d'impédances générées préalablement par sous-structuration. Ceci permet une économie du nombre de degrés de libertés du système. Deux lois d'interaction sol-pieux ont été développées: l'une basée sur une formulation élasto-plastique et l'autre sur une formulation hypo-plastique. Divers éléments finis biphasiques, avec différentes fonctions de forme et degrés d'interpolation sont premièrement développé et validés sous MATLAB puis implémentés dans le Code_Aster. Les éléments sont validés en statique puis en dynamique par comparaison à des résultats issus de la littérature. Cette recherche est menée dans le cadre d'un contrat CIFRE avec la société Stabilis.
Informations complémentaires
-
Amphithéâtre Gaston Berger, 503 Rue de la Physique, 69100 Villeurbanne
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Jean-Baptiste CHARRIE
« Etude de la vulnérabilité sismique de structures de génie civil : dévelopement d'essais pseudo-dynamiques sous-structurés pour lacaractérisation de la perte de portance appliquée aux ouvrages poteaux-poutres »
Doctorant : Jean-Baptiste CHARRIE
Laboratoire INSA : GEOMAS
École doctorale : ED162 : MEGA de Lyon (Mécanique, Energétique, Génie civil, Acoustique)
La perte de portance suscite un intérêt croissant en raison du contexte socio-économique : mieux comprendre ce phénomène est nécessaire pour réduire les risques associés. De nombreux essais sont donc réalisés dans le domaine académique. Expérimentalement, les études sont rapidement limitées à cause des coûts et de la complexité de mise en place : une grande partie des essais sont réalisés de manières quasi-statique et sur des sous-assemblages. Le comportement dynamique de structure complète est généralement modélisé numériquement. Cependant, le niveau de confiance dans les modèles est très dépendant des lois de comportements et des paramètres utilisés. De plus, l’importance de la prise en compte du comportement dynamique globale des structures est soulignée aussi bien par l’état de l’art de la recherche que part les recommandations de calcul en vigueur. La méthode des essais pseudo-dynamiques sous-structurés (utilisée dans le génie parasismique) est donc ici adaptée à l’étude de la perte de portance. En se basant sur la méthode des éléments finis, la contribution des effets d’inertie et les efforts visqueux sont calculés ; seule la réponse statique équivalente de la structure est testée expérimentalement. La sous-structuration permet d’associer la partie expérimentale de la structure à un ensemble numérique plus large. L’expérience se concentre ainsi sur la partie critique de la structure, et le comportement dynamique global est tout de même reproduit. La méthode adaptée est appliquée à un portique 2D en béton armé. Les poutres de l’étage inférieur sont testées, et le reste est modélisé avec des éléments finis poutres multifibres non-linéaires. Un couplage de schéma explicite-implicite permet de garantir la convergence de l’ensemble numérique, sans compromettre la mesure expérimentale. Des mécanismes non-linéaires sont observés dans la structure physique. Les résultats d’essais sont présentés et discutés, car la méthode permet d’obtenir des informations supplémentaires sur la réponse de la structure par rapport à un essai quasi-statique.
Informations complémentaires
-
Amphithéâtre AE1 du département GE, INSA-Lyon (Villeurbanne)
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Aurore GOIGOUX
Experimental and theoretical analyses of the Rolling Contact Fatigue for indented surfaces
Doctorante : Aurore GOIGOUX
Laboratoire INSA : LAMCOS
École doctorale : ED162 : MEGA de Lyon (Mécanique, Energétique, Génie civil, Acoustique)
L’électrification des véhicules induit une modification des conditions opératoires des roulements présents dans les réducteurs. Cette application est caractérisée par une lubrification polluée.
Afin de développer des nouveaux matériaux efficacement, il est nécessaire de comprendre le mécanisme d’endommagement et d’en déduire les paramètres influents, ceci dans des conditions opératoires représentatives. Dans cet objectif, cette étude expérimentale et théorique est menée sur des roulements en 100Cr6 martensitique indentés par des particules dures. Le mécanisme d’endommagement est étudié basé sur deux approches : une caractérisation quantitative des indents et de leur endommagement et une caractérisation multi-échelle de la microstructure. Il est montré que les opérations de finition génèrent une fine couche plastiquement affectée à la surface qui n’évolue plus, ni après indentation, ni après fatigue, excepté sous l’épaulement de l’indent. Ainsi, l’épaulement est clé dans l’initiation de l’endommagement. D’abord, il se déforme et/ou s’use progressivement au cours de l’essai, son aspect de surface change et la zone rodée augmente. L’épaulement amont a un aspect de surface différent de celui aval, ce qui pourrait indiquer une déformation plastique plus avancée, expliquant la position préférentielle de la fissuration. Cette déformation engendre une plasticité avancée sous l’épaulement. Avec l’accumulation des cycles, une fissure s’y initie, certainement sur un défaut, comme l’interface carbure primaire/matrice. La propagation de la fissure n’est pas immédiate et consiste en deux processus distincts caractérisés par deux faciès de rupture différents. La fissure se propage d’abord dans une zone à la microstructure très fine, suggérant une propagation lente. La fissure modifie additionnellement la microstructure au-dessus d’elle, certainement par déformation et cisaillement entre les lèvres. La probabilité de fissuration est corrélée au temps d’essai, à la pression et au volume du creux de l’indent, mais pas à sa pente. L’influence du volume du creux pourrait s’expliquer par un volume d’épaulement plus important.
Informations complémentaires
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Nicolas Fernando PONCETTI
« Noise annoyance in open-plan offices and occupant fatigue: a study on the influence of age-related hearing loss »
Doctorant : Nicolas Fernando PONCETTI
Laboratoire INSA : LVA
École doctorale : ED162 : Mécanique, Énergétique, Génie Civil, Acoustique
Open-plan offices are common in the tertiary sector, yet occupants often complain about noise, particularly from co-worker conversations. This issue can differently affect normal hearing people and those with presbycusis. This study examines the impact of mild hearing loss (early-stage presbycusis) on performance, fatigue, and perceived workload, with a focus on the effect of irrelevant speech. An analysis of the decrease in performance on a serial recall task as a function of the intelligibility level of irrelevent speech was conducted with young, normal-hearing subjects under two auditory conditions: with and without a hearing loss simulator, as well as with hearing-impaired elderly subjects. Participants were exposed to five noise conditions and silence. Subjective intelligibility was also measured. The results showed a minor, non-significant difference in decrease of performance between normal-hearing and hearing-impaired participants. The hearing loss simulator produced results comparable to those of the older group, validating its efficacy. A second experiment involving prolonged noise exposure was conducted to examine factors such as fatigue and workload, which are challenging to evaluate in shorter experiments like the first one. In this experiment, a working day was simulated in an open-plan office, where participants performed clerical tasks while exposed to irrelevant speech. The results indicate that the intelligibility of the noise does not appear to significantly impact perceived fatigue and workload. Again, no notable differences were observed between the two groups studied.
Informations complémentaires
-
Amphithéatre Chappe - Bâtiment Hedy Lamarr - Villeurbanne
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Adrien DIDIER
« Mobiliser le chargement ultrasonique pour caractériser la fatigue de contact roulant : une étude de l'amorçage »
Doctorant : Adrien DIDIER
Laboratoire INSA : LAMCOS
École doctorale : ED162 : MEGA de Lyon (Mécanique, Energétique, Génie civil, Acoustique)
Les phénomènes d'endommagements causés par la fatigue de contact roulant sur une surface indentée sont reconnus comme responsables de la majorité des dysfonctionnements de roulements aéronautiques. Ces mécanismes d'endommagements sont encore mal compris en raison d'un manque crucial de données expérimentales. En effet, ces phénomènes ne se manifestent qu'après de nombreuses années, voire plusieurs décennies de fonctionnement, ce qui rend toute analyse expérimentale conventionnelle particulièrement laborieuse et chronophage. De plus, la simulation numérique de ce type d'endommagements est actuellement impossible, tant en raison du manque de données expérimentales disponibles que du nombre extrêmement élevé de cycles à simuler.
Afin de rendre accessible l'étude des sollicitations gigacyclique, nous avons conçu un dispositif de fatigue ultrasonique capable de reproduire un trajet de chargement analogue à celui d'un roulement sur une surface indentée, avec un chargement localement multiaxial et non proportionnel. Ce parallèle entre les deux trajets de chargement a été établi grâce à des simulations numériques par éléments finis. Ainsi, le dispositif expérimental permet de simuler l'équivalent de plusieurs décennies d'utilisation, soit plusieurs milliards de cycles, en seulement quelques dizaines d'heures. Cette étude a ainsi permis d'établir de nombreux liens entre la fatigue de contact roulant et la fatigue ultrasonique.
Elle a notamment permis d'expliquer le phénomène de transition des sites d'amorçage de fissures, qui se déplacent de la surface vers la profondeur du matériau, dans le cadre de la fatigue à très grand nombre de cycles. De plus, une analyse approfondie du raffinement local de la microstructure a été réalisée, mettant en évidence un lien direct avec l'amorçage en fatigue gigacyclique. Ce phénomène de raffinement a pu être expliqué et attribué à la même cause sous-jacente dans le cas de la fatigue des roulements et de la fatigue ultrasonique : le glissement dévié des dislocations (cross- slip).
Informations complémentaires
-
Amphithéâtre Seguin, INSA-Lyon (Villeurbanne)
Derniers évènements
UNITECH - Assemblée générale 2025
Du 31 aoû au 05 sep
Sciences & Société
Soutenance de thèse : Fadi KARKAFI
« Nonstationary vibration diagnostics of rotating machinery: application to aeronautic power transmission systems »
Doctorant : Fadi KARKAFI
Laboratoire INSA : LVA
École doctorale : ED162 : MEGA de Lyon (Mécanique, Énergétique, Génie civil, Acoustique)
Le bon fonctionnement des machines tournantes repose sur la surveillance vibratoire de composants rotatifs fragiles tels que les engrenages et les roulements. Concernant plus particulièrement le cas des systèmes de transmission de puissance en aéronautique, la surveillance vibratoire présente des défis considérables qui sont abordés dans cette thèse
: (i) les régimes de fonctionnement non stationnaires, qui nécessitent l'adoption d'approches synchrones, (ii) les interactions complexes entre différents sous-systèmes, susceptibles de masquer ou perturber les signaux de diagnostic et (iii) le bruit émis par diverses sources, tant environnementales qu’internes, rendant la détection des défauts plus difficile. Pour répondre à ces défis, les principes de diagnostic proposé dans cette thèse s'articulent autour de plusieurs objectifs : (1) une estimation fiable de la vitesse angulaire instantanée, permettant la synchronisation des signaux avec les variations du régime, (2) l'extraction des composantes vibratoires pertinentes pour isoler les composants mécaniques critiques et (3) l'application de diagnostics spécifiques à chaque composant, tenant compte des variations opérationnelles pour garantir robustesse et fiabilité. Les méthodologies développées sont validées par des données expérimentales, démontrant leur potentiel pour améliorer la fiabilité et la sécurité des systèmes de transmission en aéronautique.
Informations complémentaires
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne