
Sciences & Société
Soutenance de thèse : Sarah DOURI
Mise en place de références métrologiques pour la mesure de conductivité thermique par microscopie thermique à balayage
Doctorante : Sarah DOURI
Laboratoire INSA : CETHIL - Centre d'Énergétique et de Thermique de Lyon
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
La demande croissante de la gestion thermique dans diverses industries (énergie, micro et nanoélectronique...) a fait naître le besoin de techniques de caractérisation thermique fiables à l'échelle micro et nanométrique. La microscopie thermique à balayage (SThM pour « Scanning Thermal Microscopy » en anglais) est un outil intéressant pour la caractérisation des propriétés thermiques et l'étude des mécanismes de transfert de chaleur à ces échelles. Cependant, certains aspects métrologiques restent un défi pour la mesure quantitative et traçable de la conductivité thermique avec la technique SThM. L'objectif de ce travail est d'améliorer la métrologie associée à la mesure de la conductivité thermique avec le SThM pour obtenir des mesures quantitatives, traçables et fiables. L'une des principales contributions de ce travail est l'établissement d'un nouveau modèle 3D par la méthode en éléments finis (MEF) pour la deuxième génération de la sonde Palladium afin de décrire plus précisément la dissipation de la chaleur en son sein ainsi que les différents mécanismes de transfert de chaleur qui se produisent entre la pointe et l'échantillon. Les résultats de simulation révèlent l'influence de la résistance thermique d'interface sur la réponse thermique et la sensibilité de la technique à ce paramètre tant dans l'air que dans le vide. Le transfert de chaleur par conduction en régime balistique (au contact), qui est généralement négligé dans les modèles existants dans la littérature, a été intégré dans le modèle 3D. L'étude met en évidence la nécessité de prendre en compte ce transfert de chaleur lorsque les mesures sont effectuées dans le vide. Une étude comparative entre le modèle 3D MEF et le modèle analytique généralement utilisé expérimentalement pour étalonner les sondes résistives évalue l'applicabilité de l'approche analytique pour les mesures de conductivité thermique et met en évidence ses limites et les améliorations possibles. La partie expérimentale de ce travail se concentre sur l'amélioration de l'installation expérimentale du Laboratoire de mesure et d'essais et des protocoles de mesure pour une mesure plus précise et répétable (reproductible). En outre, une courbe d'étalonnage expérimentale est établie et l'incertitude associée est évaluée à l'aide d'une nouvelle approche. Les résultats montrent que les améliorations apportées à l'installation et aux protocoles de mesure réduisent l'incertitude associée au mesurande, diminuant ainsi l'incertitude associée à l'estimation de la conductivité thermique. L'analyse expérimentale met en évidence que des mesures quantitatives et traçables de la conductivité thermique (pour des échantillons où le transfert de chaleur est principalement diffusif) avec la technique SThM sont possibles pour les matériaux à faible conductivité thermique (actuellement limitée à la plage de 0,187 W.m-1.K-1 jusqu'à 10 W.m-1.K-1) avec une incertitude associée <20 % (k=2).
Informations complémentaires
-
La rotonde, LNE Paris 1 Rue Gaston Boissier, 75015 Paris
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Célia Sondaz
Vers une qualification interdisciplinaire de la vulnérabilité sanitaire individuelle et des vécus face aux fortes chaleurs : croisement et mise à l'épreuve de la modélisation du stress et des astreintes thermiques avec le terrain ethnographique
Doctorante : Célia Sondaz
Laboratoire INSA : CETHIL - Centre d'Énergétique et de Thermique de Lyon
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
L'exposition aux vagues de chaleur, de plus en plus fréquentes, longues et intenses, altère la santé et le bien-être des habitants, notamment en milieu urbain. Les interactions entre les individus et leur environnement physique et social à l'origine de cette altération sont complexes, multifactorielles et multidimensionnelles. C'est pourquoi cette thèse propose et expérimente une approche interdisciplinaire de qualification des conséquences des surchauffes urbaines sur la santé individuelle et de la vulnérabilité associée. Deux méthodes sont ainsi croisées : (i) la modélisation et la simulation numérique des ambiances thermiques intérieures et des réactions thermo-physiologiques associées, (ii) le recueil et l'analyse des réactions à la chaleur, des stratégies d'adaptation, des percepts et des représentations individuelles et sociales, via une enquête qualitative de terrain. Cette approche a été expérimentée sur une population épidémiologiquement vulnérable aux fortes chaleurs, les femmes âgées, et en se consacrant principalement à l'exposition à l'intérieur des logements. Dans cette thèse, la modélisation a pour objectif d'étudier l'exposition thermique dans le logement ainsi que les réactions physiologiques induites. Pour cela, le modèle thermo-physiologique multisegments et multi-nœuds JOS-3 a été adapté pour simuler les astreintes thermiques, hydriques et cardiovasculaires. Ainsi, le nouveau modèle développé, aJOS-3, inclut un bilan hydrique complet, le calcul de la fréquence cardiaque et les limites de thermorégulation dues aux astreintes hydriques et cardiovasculaires. Des études de sensibilité de aJOS-3 à ses paramètres d'entrée, au pas de temps et aux asymétries en entrée ont montré la pertinence, en première approximation, de réaliser des simulations en série avec le modèle de STD de bâtiment EnergyPlus avec un pas de temps de 15 minutes. En parallèle de la modélisation, l'enquête de terrain réalisée auprès de 7 femmes de plus de 70 ans vivant seule dans trois modes d'habiter différents durant les étés 2022 et 2023 a reposé sur: (i) des mesures thermiques en continu dans les logements, (ii) des entretiens semi directifs, et (iii) un suivi quotidien à l'aide de carnets de bord et d'entretiens téléphoniques. Les résultats montrent notamment que les réactions psychologiques, sociales et comportementales sont au moins aussi problématiques que les symptômes physiques pour les participantes. Les percepts thermiques sont influencés par de multiples facteurs, et les représentations de la chaleur et de la vulnérabilité jouent un rôle clé dans l'adoption de stratégies d'adaptation ainsi que dans la tolérance à la chaleur et à ses conséquences. Au travers de deux études de cas, la chaîne de modèles EnergyPlus - aJOS-3 a été mise à l'épreuve du terrain afin d'évaluer son apport pour la compréhension des réactions à la chaleur. La comparaison des astreintes physiologiques simulées avec les vécus estivaux rapportés suggère que ce croisement des approches constitue un outil pertinent pour personnaliser les stratégies d'adaptation à conseiller. De plus, la modélisation des astreintes avec aJOS-3 semble plus représentative de la répartition temporelle des réactions physiques que l'estimation d'indices de stress thermique classiques tels que la PET. Le développement méthodologique, l'analyse du terrain et les études de cas montrent comment le croisement de la modélisation du stress et des astreintes thermiques avec le terrain permet d'appréhender les vécus et réactions en périodes de forte chaleur, par exemple par l'identification des réactions les plus marquantes, par celles des facteurs affectant l'exposition, les percepts ou la tolérance aux réactions, etc. L'approche interdisciplinaire permet également d'identifier les besoins, atouts, limites et perspectives propres aux différentes méthodes ainsi que les enjeux liés à leur croisement interdisciplinaire.
Informations complémentaires
-
Salle de Conférence de la BU Sciences de Lyon 1, 20 avenue Gaston Berger, 69100 Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Marianne SION
Preuve de concept d'une pompe à chaleur élastocalorique pour la réfrigération à température proche de la pièce utilisant du caoutchouc naturel
Doctorante : Marianne SION
Laboratoire INSA : CETHIL - Centre d'Énergétique et de Thermique de Lyon
École doctorale : ED162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
De nos jours, la plupart des systèmes de réfrigération se basent sur la compression de gaz. L'utilisation de ces gaz compressés a révélé des problèmes, notamment une dégradation de la couche d'ozone et un potentiel de réchauffement climatique élevé. Plusieurs générations de gaz réfrigérant se sont succédées et ont été finalement bannies à cause de leur toxicité, de problèmes de sécurité ou de leur impact négatif sur l'environnement. Une alternative est l'utilisation de matériaux caloriques qui peuvent être utilisés pour faire de la réfrigération liquide-solide avec des systèmes régénératifs ou de la réfrigération solide-solide en utilisant des systèmes de réfrigération à étage unique. Les matériaux caloriques sont connus pour être sujets à des variations de températures lorsqu'ils sont soumis à un chargement externe. Ces matériaux sont divisés en quatre catégories : magnétocalorique, électrocalorique, barocalorique et élastocalorique, suivant le type de chargement, champ magnétique, champ électrique, pression ou contrainte uniaxiale, respectivement. Les matériaux élastocaloriques sont divisés en deux catégories, les alliages à mémoire de forme, tels que les alliages de Nickel Titane (Ni-Ti) et les polymères, tels que le caoutchouc naturel. Les polymères n'ont pas été beaucoup étudiés pour la conception de système de réfrigération élastocalorique. Cependant, le caoutchouc naturel est un matériau intéressant pour la réfrigération solide car il est peu coûteux et a un faible impact environnemental. L'utilisation du caoutchouc naturel, qui peut être considéré comme un matériau isolant thermiquement, représente un défi. Le but de ce travail est de mieux comprendre comment le caoutchouc naturel peut être un bon candidat pour la réfrigération solide pour un système de réfrigération à étage unique. Il est nécessaire de comprendre quels sont les paramètres clés les plus importants pour obtenir les meilleures différences de température et puissance de refroidissement. Les principales questions scientifiques se posant sont sur la possibilité d'obtenir une meilleure compréhension des mécanismes de transfert et de déterminer si une mise à l'échelle du système de réfrigération peut permettre d'obtenir de plus larges différences de température et de plus hautes puissances de refroidissement. Afin de répondre à ces questions, cette thèse se concentre sur le développement et l'évaluation des performances d'un système de réfrigération élastocalorique utilisant du caoutchouc naturel. Le Chapitre 1 de ce travail présentera le contexte et l'état de l'art sur les différents effets caloriques et certains systèmes de réfrigération utilisant ces effets. Dans le Chapitre 2, un système de réfrigération à étage unique à 4 temps est présenté et testé, afin de mieux comprendre les mécanismes de transfert de chaleur. Dans le Chapitre 3, une comparaison de neuf échantillons de caoutchouc naturel est présentée, afin d'étudier l'impact de l'épaisseur et de la composition des matériaux sur les performances du système. Dans le Chapitre 4, un deuxième système expérimental est étudié. C'est un système de réfrigération à 2,5 temps, qui a pour spécificité de mettre le caoutchouc en contact avec l'échangeur chaud lorsqu'il est toujours en cours de chargement. Dans le Chapitre 5, un modèle analytique est développé et utilisé afin d'étudier le transfert de chaleur entre le caoutchouc naturel et les échangeurs de chaleur. Finalement, une conclusion générale pour rappeler les principaux résultats de la thèse et les perspectives d'amélioration du système de réfrigération élastocalorique.
Informations complémentaires
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Cindy DELAGE
Rôle et avantages de l'intelligence artificielle dans la modélisation du transfert radiatif dans les atmosphères gazeuses et son application à l'analyse des données satellitaires.
Doctorante : Cindy DELAGE
Laboratoire INSA : CETHIL - Centre d'Énergétique et de Thermique de Lyon
École doctorale : ED162 : MEGA de Lyon (Mécanique, Énergétique, Génie civil, Acoustique)
L'étude de l'atmosphère terrestre nécessite le traitement de données massives issues d'instruments de télédétection. Ce traitement permet d'estimer des variables thermophysiques telles que la température et les concentrations de différentes espèces. Pour obtenir ces informations, plusieurs étapes de traitement sont indispensables. L'une de ces étapes concerne le calcul de la transmissivité dans le but de résoudre !'Équation de Transfert Radiatif. En théorie, un calcul exact est possible en utilisant le modèle dit raie par raie (Line-by-Line, LBL). Cependant, ce modèle requiert un temps de calcul extrêmement élevé, ce qui le rend prohibitif pour les applications atmosphériques, où le nombre de raies à prendre en compte peut atteindre des millions. Pour cette raison, la méthodologie LBL est principalement utilisée comme référence pour valider des modèles visant à estimer la transmissivité avec la plus grande précision possible par rapport aux calculs LBL, et dans le moindre temps de calcul (CPU) possible. Ainsi, un nouveau modèle a été proposé ces dernières années, appelé 1-distributions. L'objectif principal de ce manuscrit est de proposer un résumé de l'état de l'art de ce modèle, puis des perspectives de recherche afin d'en améliorer la précision. En complément, de premières validations dans des cas d'application concrets utilisant les instruments Metlmage (EUMETSAT, ESA) et TROPOMI (ESA) seront proposées en annexe du manuscrit. La perspective de recherche consiste principalement à combiner des outils de physique et de statistiques, ou d'apprentissage automatique, pour optimiser les poids impliqués dans le modèle 1-distributions. Dans les cas d'application préliminaires, cette étape d'optimisation conduit à une erreur relative maximale inférieure à 0,5 % par rapport au calcul LBL, avec un temps de calcul de 10 ms pour un calcul atmosphérique complet (1200 valeurs, une tous les 0,5 km). Ces résultats devront être validés et généralisés dans de futures recherches, pour que ces perspectives de recherches deviennent des méthodologies validées.
Informations complémentaires
-
Amphithéâtre Émilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne
Mots clés
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Majid BASEER
Multi-criteria decision making for sustainable engineering systems
Doctorant : Majid BASEER
Laboratoire INSA : CETHIL UMR5008
École doctorale : ED162 MEGA
The trend towards sustainability in the building sector is gaining momentum, driven by environmental regulations and societal will. Although new building projects adhere to established standards, they replace only 1-3% of existing buildings annually. Renovation projects often present challenges such as the presence of uncertain data, varied stakeholder’s interests, and complex sustainability factors. To address these limitations, this thesis aims to integrate uncertainty into the decision-making process. The thesis develops a multi-criteria decision-making (MCDM) framework based on sustainability factors encompassing economic, environmental, social, and technical aspects for energy renovation of existing buildings. In contrast to existing deterministic MCDM methods, this framework incorporates uncertain data, yielding more realistic outcomes. A review of established MCDM methods was conducted, followed by a SWOT analysis to select a suitable method for the research problem. The application of MCDM methods in building energy renovations was examined to understand sustainability factors comprehensively. To address uncertainty, probability distribution and Monte Carlo simulation are integrated with MCDM methods. These tools represent uncertainty, simulate decision-making, and handle ambiguity. The novel MCDM framework, probabilistic ELECTRE Tri, has been developed based on the ELECTRE Tri method, probability distribution, revised Simos method, and Monte Carlo simulation. This framework was specifically developed for the classification of scenarios for building energy renovation. It was validated through a case study of a social housing project in Lyon, France. The results from the probabilistic ELECTRE Tri method were compared with those from ELECTRE Tri, underscoring the significance of incorporating uncertainty in decision-making. The developed framework enhances transparency, adaptability, flexibility, and user understanding, benefiting stakeholders. It is generic and can improve the objectivity and consistency of decision- making. Additionally, it advances sustainable building renovation and aligns with global environmental and energy efficiency goals. Keywords: multi-criteria decision making, ELECTRE Tri, uncertainty, probability distribution, energy renovation, sustainability.
Informations complémentaires
-
Salle 204/205, Bibliothèque Marie Cuire, INSA-Lyon (Villeurbanne)
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Félix SCHMITT
Interactions rayonnement-atmosphère en milieu urbain : modélisation avancée et analyse de leurs effets sur le rafraîchissement
Doctorant : Félix SCHMITT
Laboratoire INSA : CETHIL
École doctorale : ED162 : MEGA de Lyon (Mécanique, Energétique, Génie civil, Acoustique)
Avec l'urbanisation mondiale croissante et des vagues de chaleur de plus en plus intenses et fréquentes, la surchauffe urbaine a des conséquences délétères sur le confort et la santé des citadins. Prédire les conditions microclimatiques urbaines est dès lors crucial pour comprendre et atténuer cette surchauffe. Ce travail de thèse propose un modèle micro-météorologique avancé, capable de simuler les interactions entre rayonnement infrarouge thermique (IRT) et atmosphère urbaine à micro-échelle. Il s’agit du couplage entre un solveur CFD basé sur la méthode de Boltzmann sur réseau et la simulation des grandes échelles, et un solveur IRT en milieu participant. Le solveur IRT est d’abord appliqué dans une rue canyon dont les parois sont plus chaudes que l'air. Les résultats montrent que le flux IRT moyen absorbé aux parois est surestimé de 4 à 12 W/m2 en considérant l'air comme transparent, pour un rapport d'aspect compris entre 0,75 et 2,4. Des simulations de convection mixte sont ensuite réalisées dans une rue canyon à échelle réduite, dont les parois sont chauffées, démontrant la capacité du solveur à reproduire les caractéristiques moyennes et turbulentes de l'écoulement mixte et des transferts de chaleur, par comparaison des solutions à des mesures en soufflerie. Enfin, des simulations micro-météorologiques couplées IRT- CFD dans une rue canyon à échelle réelle, sous des conditions météorologiques réalistes, sont effectuées afin d’évaluer l’impact des interactions IRT/air sur l’écoulement et le rafraîchissement de la rue après le coucher du soleil. Les résultats indiquent que l'écoulement mixte n’est pas affecté par les interactions. Le refroidissement moyen de surface est 4 à 8 % plus rapide avec les interactions. L'ensemble de ce travail conforte la pertinence d'un niveau de modélisation élevé dans une configuration de rue pour l'étude dynamique des microclimats urbains sous l'influence des interactions IRT/atmosphère.
Informations complémentaires
-
Amphithéâtre Eugène Freyssinet, Bâtiment GCU, INSA Lyon (Villeurbanne)
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Jihyuk JEONG
Modélisation CFD du Transfert de Chaleur et de Masses dans une Remorque de Camion Réfrigérée équipée de Plaques Eutectiques
Doctorant : Jihyuk JEONG
Laboratoire INSA : CETHIL
Ecole doctorale : ED162 : MEGA
Le système de refroidissement par plaques eutectiques (matériau à changement de phase, MCP) est une possible alternative aux systèmes conventionnels de réfrigération alimentés par des combustibles fossiles pour le transport de produits alimentaires surgelés ou réfrigérés dans des remorques de camions. Des modèles numériques ont été développés pour évaluer sa faisabilité et ont été validés avec succès par rapport à des résultats numériques et expérimentaux issus de la littérature.
Initialement, un modèle d'infiltration d’air dans la remorque a été développé utilisant un modèle de turbulence k-ω SST pour prédire le comportement thermoaéraulique de l'air pendant les périodes d'ouverture des portes. Différentes configurations des plaques eutectiques et des ventilateurs ont été analysées. Sans cargaison, les plaques disposées en série le long du plafond de la remorque ont montré un temps de renouvellement plus élevé que celles disposées en parallèle à l'arrière, en raison des zones de recirculation. Cependant, une fois la cargaison introduite, les deux configurations offrent des performances similaires car les zones de recirculation n'ont pas pu se former.
Par ailleurs, un modèle multiphasique granulaire eulérien-eulérien a été développé pour prédire la formation et la croissance du givre sur les plaques eutectiques. Le modèle de turbulence k-ω SST a été intégré pour étendre l'applicabilité du modèle de givre à une gamme plus large de vitesses d’air. Un modèle de solidification et de fusion a également été implémenté et couplé aux modèles précédents. Avec ce modèle combiné, les performances d'un système eutectique ont été étudiées pour des conditions estivales typiques à Montréal, Canada. Environ 2.3 % du MCP change effectivement de phase au cours des 120 premières secondes. Globalement, le système eutectique offre une alternative viable au système conventionnel, bénéficiant des mécanismes de prévention des infiltrations ou de dégivrage.
Informations complémentaires
-
Université de Sherbrooke (Sherbrooke)
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Cong YOU
Contribution to the study of ejector expansion heat pump cycle: modelling and experimental approach
Doctorant : Cong YOU
Laboratoire INSA : CETHIL
Ecole doctorale : ED162 : Mécanique, Energétique, Génie Civil, Acoustique de Lyon
This research addresses environmental concerns in the Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC&R) industry by exploring carbon dioxide (CO2) as an eco-friendly alternative. The challenges of CO2, including its low critical temperature and high critical pressure, lead to its predominant use in transcritical mode, resulting in significant irreversibility during expansion. To overcome this, the study proposes the substitution of conventional expansion valves with ejectors in the transcritical CO2 heat pump cycle.
The ejector accelerates high-pressure CO2 through a nozzle, facilitating the mixing of low-pressure vapor from the evaporator and improving pressure recovery. Scientific validation confirms a reduction in compression work, establishing the ejector-based configuration as a more efficient alternative. Despite potential advantages, ejectors introduce complexities related to two-phase flow and sonic shock waves, necessitating simulation and experimental studies for enhanced performance.
The thesis conducts a comprehensive investigation, beginning with a review of refrigerant trends and a comparison of ejector technology with alternatives. Thermodynamic models are introduced, addressing key aspects such as isentropic efficiency, with novel data post-processing techniques proposed. The research introduces a 1-D homogeneous equilibrium model for the ejector region, validated and applied for parametric analysis and geometry design. This model is compared with 0- D thermodynamic models. Additionally, an experimental test facility provides insights into ejector performance across varying evaporation pressures.
In summary, this research significantly contributes to understanding transcritical CO2 heat pump cycles, specifically focusing on ejector technology. The integration of theoretical models and experimental studies offers essential insights for optimizing ejector design and operational parameters, meeting the evolving needs of the HVAC&R industry and promoting sustainable refrigeration applications.
Informations complémentaires
-
Amphithéâtre Clémence Royer (bâtiment Jacqueline Ferrand) - (Villeurbanne)
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Flavia BARONE
Numerical assessment of heat stress in dwellings and immediate surroundings: development of a Microclimate Zonal Model coupled to Buildings models
Doctorante : Flavia BARONE
Laboratoire INSA : CETHIL
Ecole doctorale : ED 162 : MEGA
La persistance des épisodes de surchauffe urbaine affecte directement l’exposition aux stress thermique tout particulièrement en milieu urbain. Le but de cette thèse est donc de développer une méthodologie numérique pour évaluer le stress thermique quotidien et saisonnier dans le logement et son environnement proche. L’exposition est étudiée selon une approche eulérienne, par rapport à un lieu fixe, et une approche lagrangienne, par rapport au déplacement de l’individu. Ainsi, la thèse introduit les concepts de stress thermique, définit les indicateurs nécessaires et identifie les variables climatiques influentes ainsi que leurs échelles spatiales et temporelles. L’absence d’une approche de modélisation appropriée au stress thermique aux échelles spatiales et temporelles ciblées, conduit à développer et coupler un modèle zonal de microclimat (McZM) avec un modèle de bâtiment. Le McZM repose sur une interpolation linéaire des débits massiques obtenus avec un précalcul CFD k-epsilon RANS stationnaire. Les simulations CFD sont également utilisées pour prédire les vitesses du vent spatialisées, les coefficients de transfert convectifs et les coefficients de pression. Le McZM inclut un modèle de sol et des modèles radiatifs pour les calculs du rayonnement solaires et de grandes longueurs d’ondes, ainsi que pour le calcul de la température radiante moyenne. Pour les écoulements dans le bâtiment, un modèle de pression couplé au McZM et au modèle de de bâtiment est développé. Les composants des modèles sont soumis à une validation par comparaison avec d’autres modèles ou des données expérimentales. Une application du modèle sur un ilôt à Confluence, confirme les avantages de l’utilisation d’une approche spatialisée dans l’évaluation du stress thermique. Ce cas permet également d’évaluer les avantages relatifs de la mise en œuvre de différentes mesures de rafraîchissement sur le stress thermique.
Des perspectives d’amélioration du McZM actuel et de son processus de validation son suggérées.
Informations complémentaires
-
Amphithéâtre Laura Bassi, INSA-Lyon (Villeurbanne)
Derniers évènements
Ateliers danse avec la Cie MF
Les 15 et 22 mai 2025
Sciences & Société
Soutenance de thèse : Julie SORIANO
Modélisation de la distribution spatiale de l’îlot de chaleur urbain à l’échelle locale : mise en place et évaluation d’une approche par réseau de rues
Doctorante : Julie SORIANO
Laboratoire INSA : CETHIL
Ecole doctorale : ED162 : Mécanique, Energétique, Génie Civil, Acoustique de Lyon
La modélisation du microclimat urbain est un outil précieux pour évaluer différentes configurations urbaines dans un contexte de surchauffes urbaines. Deux types de modèles sont souvent utilisés : des modèles détaillés ayant recours à la CFD, ou des modèles de canopée urbaine qui représentent un motif urbain répété avec les caractéristiques moyennes d’un quartier. Dans cette thèse, un nouveau modèle se plaçant entre ces deux catégories en termes de précision et de temps de calcul est développé. Son objectif est de modéliser l’îlot de chaleur urbain dans la couche de canopée urbaine à l'échelle locale et sur une période de l'ordre d'une saison, en représentant explicitement les bâtiments. Pour cela, une approche en réseau de rues canyon est proposée, inspirée de modèles de dispersion de polluants, notamment SIRANE. Elle consiste à utiliser un maillage zonal dans lequel chaque rue canyon correspond à une maille. Les intersections relient entre elles les rues, formant un réseau. Une première partie du travail de thèse consiste au développement d'un modèle aéraulique, radiatif et thermique de rue canyon. Ce modèle est confronté à des mesures sur des rues expérimentales sans végétation (ClimaBat). Enfin, la modélisation des arbres est comparée qualitativement à des mesures sur une rue expérimentale arborée à Angers. Dans une deuxième partie, un changement d'échelle est effectué et l'approche en réseau de rues est présentée en détail. Par ailleurs, un prétraitement des données météorologiques est développé dans l’optique d'estimer les conditions limites du quartier urbain simulé, à partir de mesures à une station météorologique. Des mesures à Bâle dans le cadre de la campagne BUBBLE ont permis de l’évaluer. Finalement, le modèle complet est appliqué sur un quartier réaliste, dans le but d'évaluer la cohérence des résultats. Dans l'ensemble, cette application a montré le potentiel du modèle pour des études de microclimat urbain.
Informations complémentaires
-
Amphithéâtre OUEST, Bâtiment des Humanités, INSA Lyon (Villeurbanne)