INSA Lyon

Dans de nombreuses applications (en science des matériaux ou en imagerie médicale par exemple), des dispositifs d'acquisition non invasifs comme l'imagerie par résonance magnétique et la tomographie ou microtomographie aux rayons X, sont nécessaires pour l'observation, la prise de mesures ou l'aide au diagnostique. Ces dispositifs génèrent habituellement des données volumiques, c'est-à-dire des images 3D, composées de données régulièrement espacées dans un domaine rectangulaire. Les volumes 3D proviennent de la segmentation de telles images. Ils peuvent aussi être synthétisés, car de nombreux schémas numériques de simulation reposent sur la régularité du support des données.

Le projet PARADIS porte sur la géométrie des frontières des volumes 3D, appelées surfaces digitales. Conserver la nature discrète des données est un avantage pour effectuer des calculs exacts en nombres entiers, pour réaliser des opérations géométriques booléennes ou pour utiliser des structures de données efficaces. Un inconvénient est sa pauvre géométrie : une surface discrète est seulement composée d'éléments de surface quadrangulaires dont le vecteur normal est parallèle à l'un des axes, cela quelle que soit la résolution. De nombreuses tâches en informatique graphique, vision par ordinateur ou analyse d'image 3D, nécessitent une géométrie plus riche : le rendu, les déformations de surface pour la simulation physique ou le suivi, les mesures de précision, etc. Pour réaliser des tâches géométriques pertinentes et bénéficier en même temps des avantages cités précédemment, on a besoin d'enrichir la géométrie des surfaces digitales en estimant des informations supplémentaires en chaque élément de surface. Ce projet porte plus particulièrement sur l'estimation de quantités géométriques locales et du premier-ordre, telle que la direction du vecteur normal. Il vise à fournir des estimateurs précis et sans paramètre basés sur une portion de surface de taille adaptée autour de chaque élément. Puisque nous cherchons des estimations du premier-ordre, il s'agira typiquement d'un morceau de plan digital qui s'ajuste localement à la surface.    

Un défi est de recouvrir toute la surface par des morceaux de plan digital. Un tel recouvrement ne fournit pas seulement un champs de vecteurs normaux, mais pourrait aussi fournir, s'il est calculé pour plusieurs versions sous-échantillonnées du volume 3D donné en entrée, une manière de déterminer l'échelle à laquelle la présence de bruit est peu probable : un grand nombre de très petits segments de plan digital révèle la présence de bruit, tandis que les parties lisses sont décomposées en un plus petit ensemble de segments. 

Ce qui est difficile, c'est qu'il y a une explosion combinatoire de morceaux de plan digital et que parmi eux, tous ne sont pas tangent à la surface digitale. Une opportunité d'avancer sur cette question est de considérer le récent développement des algorithmes dits "plane-probing", proposés par le porteur et ses collaborateurs. Ces algorithmes permettent de décider à la volée comment inspecter la surface digitale et faire croître un segment de plan digital tangent par construction. La direction de croissance est donnée à la fois par des propriétés arithmétiques et géométriques.

Nous attendons des impacts positifs en informatique graphique, vision par ordinateur et analyse d'image 3D, car les tâches de haut-niveau mentionnées précédemment et bien d'autres, comme l'extraction de primitive ou la compréhension de scène, dépendent de la qualité de l'estimation des normales. De plus, comme de nombreuses images 3D sont susceptibles d'être dégradées par du bruit, notamment en imagerie médicales, la détection du bruit est une tâche cruciale qui pourrait devenir une étape incontournable lors du traitement des images 3D

https://perso.liris.cnrs.fr/tristan.roussillon/paradis.html

Visuel: 
Dates projet: 
10/2018 - 11/2022
Financement: 
Coordinateur: 
INSA LYON - LIRIS
Responsable INSA: 
TRISTAN ROUSSILLON
Sous-Titre: 
Analyse sans paramètre des surfaces discrètes
Montant global du projet: 
260638' €'