
Sciences & Société
Soutenance de thèse : Emna MASGHOUNI
Eco-design and processing of polymer composites towards the shielding of EMI by absorption: Processing, structure, and properties relationship
Doctorante : Emna MASGHOUNI
Laboratoire INSA : IMP
École doctorale : ED34 : Matériaux de Lyon
Informations complémentaires
-
Amphithéâtre Clémence Augustine Royer, Bâtiment Jacqueline Ferrand, INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Louis LESAGE
Thermodynamic and kinetic control of liquid metal dealloying for the design of porous metallic powders
Doctorant : Louis LESAGE
Laboratoire INSA : MATEIS
Ecole doctorale : ED34 Matériaux de Lyon
Metallic powders are becoming increasingly widespread due to their use in additive manufacturing processes and as catalytic materials. In this context, it is appealing to develop processes that enable the formation of open porosities in metallic powders to modify their mechanical properties and increase their specific surface area. We propose using liquid metal dealloying (LMD) to create porous powders with modified microstructures and properties. LMD is a novel technique that involves the selective dissolution of an alloying element from a precursor in a liquid metal solvent. This results in the formation of a continuous ligament structure and open porosity in the dealloyed layer.
By mixing precursor and solvent powders and heating them above the melting temperature of the solvent, we successfully dealloyed FeNi and NiCu precursor powders. This process led to either fully porous or partially porous microstructures featuring core- shell morphologies. To better understand the kinetics of the dealloying process and the resulting microstructure, we developed a diffusion model based on thermodynamic principles and successfully compared it with experimental results obtained from NiCu alloys immersed in liquid Ag. Additionally, we used in situ X-ray diffraction to monitor the phase transformations occurring during the dealloying of FeNi particles by Mg. This combination of experimental and simulation work demonstrates how dealloyed structures are controlled by equilibrium thermodynamics and/or the kinetics of the dealloying reaction. Our results highlight the potential of LMD to design dealloyed powders with tailored dealloyed fractions, ligament sizes, compositions, and microstructures. Finally, we propose using compression tests applied to powders to assess their suitability for applications in cold spray.
Informations complémentaires
-
Amphithéâtre de BU, Lyon 1 (Villeurbanne)

Sciences & Société
Soutenance de thèse : Nicolas Madinier
Caractérisation vibratoire de structures par méthodes inverses et mesures plein champ
Doctorant : Nicolas Madinier
Laboratoire INSA : LVA
École doctorale : ED162 : MEGA de Lyon (Mécanique, Énergétique, Génie civil, Acoustique)
Le développement de nouveaux matériaux alliant résistance mécanique et légèreté est un enjeu d'actualité dans de nombreux secteurs industriels. Afin de pouvoir utiliser ces matériaux, il est nécessaire de connaître leurs propriétés mécaniques. Pour les déterminer, des méthodes inverses analysant le comportement vibratoire de la structure peuvent être utilisées. Dans ce travail de thèse, deux méthodes sont utilisées : la Résolution Inverse (RI) et la Méthode des Champs Virtuels (MCV).
Dans un premier temps, les méthodes sont appliquées avec la déflectométrie optique, une méthode de mesure plein champ. L'utilisation de cette méthode de mesure avec les deux méthodes inverses permet d'obtenir des cartographies précises de la rigidité de flexion et de l'amortissement de la structure étudiée. La déflectométrie optique mesure les pentes du champ de déplacement. Une opération de gradient inverse permet de remonter au champ de déplacement. Afin de supprimer cette opération, le développement de formalismes sur les pentes de RI et de la MCV est proposé. Ces formalismes sont testés avec des simulations numériques puis une étude expérimentale est présentée.
Dans un second temps, une variante de la MCV est développée. Cette variante a pour but d'appliquer la méthode en hautes fréquences où RI et la MCV ne sont plus applicables. La Résolution Inverse Corrigée est une variante de RI qui a pour but d’appliquer la méthode dans les hautes fréquences.
La variante de la MCV qualifiée de Méthode des Champs Virtuels Adaptée en Fréquence consiste à déterminer à chaque fréquence la taille de l’intervalle d’intégration des intégrales du Principe des Travaux Virtuels (une forme faible de l'équilibre local sur laquelle se base la MCV). Elle est développée pour la poutre d'Euler-Bernoulli et la plaque de Love-Kirchhoff et est testée sur des données expérimentales pour identifier la rigidité de flexion complexe d'une plaque amortie localement.
Informations complémentaires
-
Amphithéâtre ouest des Humanités, INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Hugo GIRARD
Characterization of the fiber-matrix interface fracture properties in long fiber composites
Doctorant : Hugo GIRARD
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
Fiber-matrix interface in long fiber composite is a key aspect of global composite mechanical properties since it drives damage initiation and load transfer. Fiber-matrix interface debonding is usually the first type of damage that occurs when the composite is subjected to transverse loading. After initiation, the interface debonding propagates and often kinks into the matrix, leading to further critical defects for the structure. As a result, it is crucial to accurately characterize the fiber-matrix interface in order to prevent or control damage in composites. Going beyond existing experimental methods currently focused on interface shear fracture properties, single-fiber microcomposite tensile sample loaded transversely are developed to simultaneously characterize opening and shear fracture properties. An accurate experimental characterization of the fiber-matrix debonding process allowed the identification of the interface fracture properties using adequate 2D and 3D numerical approaches and related fracture models such as the Coupled Criterion (CC) and Cohesive Zone Models (CZM). Both the CC and the CZM are able to reproduce the experimentally observed debonding process in 2D, the 3D model being able to describe the free surface singularity. In 3D, the fracture property identification yields tensile strengths and critical energy release rates respectively slightly higher and in the same order of magnitude than those identified in 2D. The 3D model does not enable identifying the shear fracture properties, unlike in 2D. In 2D the optimal initiation crack shapes correspond to i) the stress isocontours for small brittleness numbers, ii) the energy-based shapes for large brittleness numbers and iii) neither of them for intermediate brittleness numbers. The 2D stress isocontours-based debonding shapes provide an accurate estimate of the initiation loading. In 3D, the optimum initiation crack always corresponds to energy-based debonding shapes and the 3D stress isocontours-based debonding shapes may thus overestimate the initiation loading by up to 30%.
Informations complémentaires
-
Amphithéâtre Gaston Berger, INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Junxiong WANG
Molecular dynamics simulation of semicrystalline polymers: from molecular topology to mechanical properties
Doctorant : Junxiong WANG
Laboratoire INSA : MateiS
École doctorale : ED34 : Matériaux de Lyon
Semi-crystalline polymers have attracted widespread attention due to their wide range of industrial applications, attractive mechanical properties, and good chemical resistance. Semi-crystalline polymers exhibit excellent mechanical properties due to their unique molecular structure (crystalline and amorphous phases overlapping each other). Topological molecules, like ties, loops, … and entanglements in amorphous phase, serve as stress transmitters and can be crucial to mechanical properties. However, these microstructures cannot be studied quantitatively experimentally, and the nonequilibrium process of crystallization and how the microstructure affects mechanical properties cannot be studied at the nanoscale. The dependence of the mechanical properties of semi-crystalline polymers on topology and entanglement has been explored using a coarse-grained model through molecular dynamics simulations. From cooling a melt, and after isothermal treatment, semi-crystalline polymers with lamellar structures were obtained with different entanglement densities and topologies. The strongest mechanical properties are shown when the tensile direction is highly consistent with the crystal chain orientation. And the system with a higher entanglement density has a smaller yield stress but a significant stress-hardening regime, indicating that high entanglement density effectively increases the stress-hardening effect. Additionally, the effect of different topologies on mechanical properties has been explored. Uniaxial tensile test results show that cilia have little effect on mechanical properties. The yield stress increases with the number of loops, showing that not only the loops but also the number of topologies has a strong influence on the mechanical properties. The tie molecules appear to have a slightly greater impact on the mechanical properties than the loops, manifesting in a slight strain softening effect. These results will enhance the understanding of the relationship between microstructure and mechanical properties of semicrystalline polymers.
Informations complémentaires
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne

Sciences & Société
Soutenance de thèse : Yiping CHEN
New Approaches for the Construction of Ternary Solute/Solvent/Non-solvent Phase Diagrams and Applications in the Field of Nanoprecipitation
Doctorante : Yiping CHEN
Laboratoire INSA : IMP
École doctorale : ED34 : Matériaux de Lyon
Nanoprecipitation (or solvent-displacement, Ouzo effect) process is a promising technique for straightforwardly producing colloids of controlled dimensions without recourse to surfactants or any high shearing force systems. Successful applications of the nanoprecipitation process crucially rely on the ability to construct the phase diagrams for the solute/solvent/nonsolvent ternary system of interest by identifying regions (SFME, Ouzo domain…) where the hydrophobic solute aggregates at the nanometer scale. Therefore, the main aim of this thesis is to develop robust methods to construct phase diagrams, to attempt at enlarging the Ouzo domain through cautiously-chosen additives, and finally to use thus constructed phase diagrams for precipitation of novel molecules, targeting potential applications in the biological field.
Combined fluorescence microscopy (FM) and dynamic light scattering (DLS) techniques were first used to construct phase diagrams containing pyrene as fluorescent indicator and surfactants as stabilizers in oil/solvent/water systems, respectively. It has been found that under the micrometer resolution FM, the pyrene-loaded nanodispersions appear black in the Ouzo domain (owing to their nanoscale dimensions). In DLS tests, adding a non-ionic surfactant, the Ouzo domain showed a monodisperse peak, with dI > dN and PDI < 0.15. Remarkably, the Ouzo domain identified by DLS was slightly larger than that obtained by FM owing to the introduction of surfactants. In a second approach, using the DLS technique, we studied the effect of adding specific surfactants (Brij 56, Enordet J3131, Cremophor EL) on the nanoprecipitation process. With miglyol oil, the Ouzo limit was shifted up to two decades, significantly enhancing the Ouzo domain. Finally, solid molecules such as antibiotics and fluorophores were used as solutes for nanoprecipitation. One specific antibiotic showed similar efficacy against various bacteria in molecular state or under nanoparticle form in vitro testing. Nanodispersions of high Tg fluorophores keep a good colloidal stability over a long period, and maintain their fluorescence activity upon dilution, making them good candidates as biomarkers.
Informations complémentaires
-
Amphithéâtre CNRS Rhône-Auvergne (Villeurbanne)

Sciences & Société
Soutenance de thèse : Yohan DOUEST
Development of Ti-based bulk metallic glasses for dental applications through innovative design strategy, process optimisation and surface functionalisation
Doctorant : Yohan DOUEST
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
Due to their long-range disordered atomic structure, Ti-based bulk metallic glasses (BMGs) exhibit at least twice the mechanical strength of crystalline Ti-alloys currently used in dental implant applications. Ti-based BMGs are therefore candidate materials to downsize dental implant components and reduce their invasiveness. Although numerous research works have emphasised their potential, no commercial products have been made available. Several aspects hinder their practical application. Firstly, they generally contain high amount of copper. Apart the controversy regarding its biological safety, copper has been shown to trigger pitting corrosion in chloride environment of amorphous alloys, thereby limiting their corrosion resistance. Secondly, Ti-based BMGs are challenging to process. Because of their restricted glass forming ability (GFA), they are more prone to the formation of crystalline heterogeneities even when high cooling rates are applied.
This PhD investigates independent research areas related to Ti-based BMGs, ranging from designing strategies and processability to surface functionalisation. At first, a machine learning (ML) model is employed to explore compositional spaces with reduced amount of copper within the Ti-Zr-Cu-Pd system. The model’s predictions are experimentally assessed, and a critical discussion is provided on the relevance of the ML-guided approach. Secondly, the processability of Ti40Zr10Cu36Pd14, a representative composition of Ti-based BMGs, is evaluated. Processing techniques from both laboratory and industry are compared, and the resulting as-cast crystalline heterogeneities are studied to give insights into their formation pathways. Lastly, two surface modifications aimed at reducing the influence of copper on the corrosion resistance of Ti40Zr10Cu36Pd14 are proposed. One solution involves the deposition of coating already used in dental implant systems while the second solution consists of a chemical etching treatment. The results obtained within this PhD aim to contribute both scientific and industrial advancements, while also suggesting new research topics.
Informations complémentaires
-
Salle des thèses, Bâtiment Irène Joliot Curie (bât. INL), INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Raouhi SANAA
Valorisation de la réaction thia-Michael pour la synthèse d’architectures macromoléculaires à base d’isosorbide
Doctorant : Raouhi SANAA
Laboratoire INSA : IMP (Ingénierie des Matériaux Polymères)
École doctorale : ED34 : Matériaux de Lyon
Ces travaux de thèse explorent la synthèse et la caractérisation de nouveaux copolymères poly(thioéther-ester) contenant des unités monomères dérivés de 1,4:3,6- dianhydrohexitols (isosorbide et isomannide) via la réaction thia-Michael. Les efforts se concentrent sur la génération de diverses architectures macromoléculaires linéaires, réticulées ou hybrides organique/inorganique avec des blocs poly(diméthylsiloxane). Dans un premier temps, une revue de littérature met en évidence l'intérêt des stéréoisomères 1,4:3,6-dianhydrohexitols comme monomères de base pour la synthèse de polymères, tout en examinant les mécanismes et les conditions optimales de la réaction thia-Michael ionique. Dans un deuxième temps, la synthèse détaillée de copolymères poly(thioéther-ester) en utilisant différents monomères dont certains au moins sont dérivés d’isosorbide ou d’isomannide, comme des dithiols et diacrylates, ou diméthacrylates, est abordée. Les conditions opératoires et les caractéristiques des produits obtenus, tels que des polymères linéaires de haute masse molaire, des polymères à masse molaire et bouts de chaînes contrôlés et des réseaux réticulés chimiquement, sont discutés. Ensuite, les possibilités de modification chimique des poly(thioéther-ester)s par oxydation sélective ou aléatoire des groupes thioéther en sulfoxyde et/ou sulfone, ainsi que leur impact sur les propriétés physico-chimiques des copolymères, sont explorées. Enfin, l'introduction de segments flexibles de poly(diméthylsiloxane) dans les copolymères, conjointement avec l'incorporation d'unités isosorbide, est étudiée. Les propriétés thermiques des nouveaux matériaux sont analysées en détail.
Informations complémentaires
-
Amphithéâtre de la délégation du CNRS Rhône Auvergne (Villeurbanne)

Sciences & Société
Soutenance de thèse : Yufei WANG
Layer by layer polymer films involving functionalized-PPFS building blocks: from chemical design control to film features
Doctorante : Yufei WANG
Laboratoire INSA : IMP (Ingénierie des Matériaux Polymères)
École doctorale : ED34 : Matériaux de Lyon
Ce travail de thèse à vocation fondamentale décrit la synthèse de nouveaux dérivés de poly (2, 3, 4, 5, 6- pentafluoro-styrene) (PPFS) et de PPFS-co-PS modifiés chimiquement, présentant un caractère de donneur ou accepteur de liaisons hydrogène, et leur utilisation comme briques de base élémentaires pour concevoir des films LbL multicouches aux propriétés ajustables. La fonctionnalisation chimique a été réalisée par une réaction de substitution nucléophile chimiosélective et régiosélective en position para du cycle fluoré des unités PFS, en utilisant différents thiols polaires comme agents nucléophiles. Ainsi, des dérivés mercapto composés de groupements amine (amine primaire: cystéamine et amine tertiaire: diméthylaminoéthanethiol), et de groupements acide carboxylique (acide mercapto propionique) ont été greffés avec succès sur les chaînes polymère, et les paramètres expérimentaux (temps de réaction, quantité de base ajoutée) ont été optimisés et modifiés, afin de générer un large éventail de dérivés différant de par leur degré de substitution et/ou leur fonctionnalité, facteurs qui permettent d’ajuster notamment leur capacité à interagir. Leur aptitude à interagir a été tout d’abord examinée au sein de mélanges en solution et il est apparu qu’en fonction de la nature du solvant et de la structure des espèces introduites le long des chaines, différents scénaris ont été obtenus : mélanges immiscibles, mélanges miscibles et complexes interpolymères, liés notamment au caractère transparent ou turbide de la solution. L’observation macroscopique des mélanges a été complétée par une étude à l’état solide, après évaporation du solvant et cette analyse a mis en évidence la formation d’interactions entre les dérivés de PFFS modifiés, impliquant principalement des liaisons hydrogène entre les espèces aminées et carboxylées. Au final, les combinaisons les plus appropriées de polymères modifiés ont été utilisés pour construire avec succès des films LbL multicouches, par un procédé de dépôt par immersion. L’influence de différents paramètres liés aux aspects structuraux des polymères (degré de modification, structure du thiol greffé), et liés au procédé de dépôt (concentration des polymères, nature du solvant) a été étudiée de façon approfondie. Il en résulte que tous ces paramètres influencent étroitement, le mécanisme de croissance, l’épaisseur, l’organisation interne, les propriétés de mouillabilité, et la morphologie de surface des films LbL finaux.
Informations complémentaires
-
Amphithéâtre de la délégation du CNRS Rhône Auvergne (Villeurbanne)

Sciences & Société
Soutenance de thèse : Charlotte MICHELIN
Nouvelle formulation de plastisol pour l’enduction filamentaire, sans phtalate et sans antimoine
Doctorante : Charlotte MICHELIN
Laboratoire INSA : IMP
École doctorale : ED34 : Matériaux de Lyon
Le plastisol est un revêtement constitué de poly (chlorure de vinyle) (PVC), de plastifiant, d’un système d’ignifugation et de charges. Toutefois, des recherches ont démontré la toxicité de certains de ses composants, notamment les plastifiants à base de phtalate, qui sont aussi les plus utilisés, et le sel d’antimoine du système d’ignifugation. C’est pourquoi, et afin de répondre à un besoin du marché, nous avons recherché une nouvelle formulation du plastisol, sans phtalate et sans sel d’antimoine, qui réponde à la fois au problème de toxicité, et à la fois à un cahier des charges bien défini.
La première étape est l’étude de différentes familles de plastifiants, des esters (autres que les phtalates), aux dérivées d’huiles, en passant par les polymères et les liquides ioniques. Après l’étude de la compatibilité de ces plastifiants avec le PVC, nous les avons caractérisés par le biais de divers paramètres tels que la Tg, Tα, module de conservation, module de dissipation, point de gélification. Nous avons ainsi démontré que les performances du plastifiant dérivé d’huile époxydée partiellement biosourcée égales celles du phtalate.
La deuxième étape de ce travail doctoral est la recherche d’un nouveau système d’ignifugation adapté à ce nouveau plastisol. Pour cela, nous avons étudié différentes familles de retardateurs de flamme tels que les oxydes métalliques, les phosphorés, les liquides ioniques, les azotés, les biosourcées et d’autres. Chaque retardateur a été étudié seul ou en combinaison avec d’autres retardateurs dans un plan d’expérience. Afin de répondre aux critères de la norme française (classement M1), allemande (classement B1) et européenne (classement B S2 D0 ou C S3 D0), la stratégie sélectionnée a été de combiner plusieurs retardateurs de flammes aux propriétés d’ignifugation différentes mais complémentaires. Les meilleures formulations se sont révélées êtres celles à base de molybdate (trois molybdates), d’alginate de calcium et d’hydrotalcite. Nous avons ensuite mené une étude au cône calorimètre et au « mini SBI » qui ont permis de choisir une formule combinant du molybdate de zinc / aluminium et de l’hydrotalcite comme solution finale.
La dernière étape est la stabilisation de notre formulation. Pour cela, nous nous sommes intéressés à un stabilisant à base de triisotridecy phosphite et de baryum, et à une combinaison de stéarate de zinc et de β-dicétone. Cette dernière sera retenue.
Ensemble, les travaux de recherche menés dans cette thèse proposent une nouvelle formulation de plastisol sans phtalate et sans sel d’antimoine, proposant ainsi une réponse au problème de toxicité. En plus, notre formulation se caractérise par un comportement similaire à un plastisol à base de phtalate. Enfin, cette formulation obtient un classement M1, B2, C S3 D0.
Informations complémentaires
-
Salle de la Bibliothèque, Bâtiment Jules Verne, INSA Lyon (Villeurbanne)