
Sciences & Société
Soutenance de thèse : Sébastien DAGUE
Characterization and modelling of phase transformations and microstructures of cold rolled dual phase steels after heat treatment
Doctorant : Sébastien DAGUE
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
L’objectif de cette thèse était de contribuer au développement et à la compréhension des phénomènes physiques pilotant les évolutions microstructurales d’aciers Dual-Phase, principalement lors des phases de refroidissement. Dans un souci d’utilisation sur des lignes de production industrielles, des outils numériques à champ moyen à base physique ont été développés, ceux-ci étant utilisables pour une large gamme de compositions chimiques et de paramètres du cycle thermique. Une calibration des modèles sur des aciers ternaires issus de coulées de laboratoire a été effectuée avant leur validation sur deux nuances industrielles.
Un modèle, développé dans une thèse antérieure, pour la transformation de phase entre la ferrite et l’austénite ayant lieu lors de la phase de chauffage et maintien isotherme a été modifié avec pour objectif de le rendre plus robuste d’un point de vue numérique.
Un autre modèle visant à simuler la transformation de l’austénite en ferrite, lors de refroidissements lents continus, a été développé. Ce modèle, calibré sur des alliages ternaires Fe-C-Mn, est basé sur une description de la croissance de ferrite faisant intervenir des lois de germination et croissance. Dans un but de rapidité de calcul, ce modèle a été implémenté en langage VBA (Excel). Il a été testé sur différentes compositions d’alliages et il a été possible de trouver des lois de prédiction pour les paramètres du modèle, en fonction de la composition en manganèse de l’alliage et des conditions de refroidissement.
Pour finir, la formation de bainite en condition isotherme à 460°C et 500 °C a été étudiée en DRX in situ sur la ligne DiffAbs du Synchrotron SOLEIL. Le maintien de l’austénite a été mis en évidence lors d’un palier isotherme à 460°C ou à 500°C, pour deux alliages différents. Cette austénite peut ensuite être transformée en martensite lors du refroidissement rapide final, modifiant alors les caractéristiques mécaniques de l’alliage.
Additional informations
-
Amphithéâtre Gaston Berger, INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Zheheng LIU
Characterization of plastic strain localization in polycrystalline materials by means of 3D X-ray diffraction imaging techniques
Doctorant : Zheheng LIU
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
This thesis is part of the ANR 3DiPolyPlast project devoted to an in-depth study of the mechanisms leading to plastic strain localization in pure metals. 2D surface observations, 3D volume characterization, and numerical simulations are carried out in three simultaneous PhD projects. This thesis focuses on 3D characterization of strain localization using a combination of Topo-Tomography (TT) and Diffraction Contrast Tomography (DCT) - two synchrotron radiation near-field imaging techniques allowing for
1 micron spatial and 0.02-degree angular resolution. Two material systems have been studied: Ti-7Al alloy and pure Ni. In both cases the 6D algorithm is used to reconstruct the orientation field during initial stages of plastic deformation, which in turn is analysed for signatures of strain localization. Both the data acquisition scheme for TT and the 6D / 5D reconstruction algorithms for DCT and TT scans have been optimized. Theoretical analysis for the TT scan is performed to explore the limits of its reconstruction capacities and the methods to enhance them. Simulated diffraction data are used to study joint reconstructions of DCT and TT scans, illustrating possibilities and limitations of the optimized reconstruction framework. Contrary to Ti7Al, exhibiting clearly resolvable orientation contrasts in vicinity of slip bands, the diffraction data from pure Ni could not reveal slip bands, probably due to the weak and diffuse character of slip in this pure material. However, distinct structures in the orientation field were observed in directions perpendicular to the primary slip plane.
Additional informations
-
Salle Auditorium, ESRF the European Synchrotron, 71 Avenue des Martyrs (Grenoble)

Sciences & Société
Soutenance de thèse : Alexandru TECHERES
23/10/2024 à 21h (CEST) / 24/10/2024 à 6h (AEDT)
Doctorant : Alexandru TECHERES
Laboratoire INSA : MATEIS
Ecole doctorale : ED34 : Matériaux de Lyon
The strengthening of Al alloys via Sc and Zr has been well documented in the literature. The formation of L12 Al3Sc and Al3Zr leads to improvements of mechanical properties through formation of precipitates during artificial ageing. However, the scarcity and cost of Sc have always been a challenge towards adoption on an industrial scale. Nonetheless, new mineral deposits discovered in Australia, together with novel processing methods create the expectation that the price of Sc will become more accessible.
In the context of a circular economy, recycling is the norm. However, this introduces impurities in the recycled material which originate from the imperfect sorting of scraps. The precipitation kinetics of Al3Sc in high purity, controlled composition Al alloys is well understood. However, the precipitation process in the presence of impurities such as Fe and Si has not been studied.
Therefore, the problematic of the current thesis focuses of the effect of impurities on the precipitation kinetics in Al-Sc-Zr during artificial ageing at various temperatures. Previous reports in the literature indicate an accelerating effect of Si and there are limited reports on the effect of Fe.
Using a combinatorial method, in this work we investigate the effect of Si on the precipitation kinetics via samples with a macroscopic composition gradient (also called diffusion couples). Additionally, two sets of samples are investigated with different Fe concentration to comparatively study the effect of Fe. The precipitation kinetics is observed indirectly via small angle x-ray scattering (SAXS) and hardness measurements across the samples with macroscopic composition gradient. Furthermore, advanced characterisation techniques such as Scanning Electron Microscopy, Transmission Electron Microscopy and Atom Probe Tomography are employed to analyse conditions determined as critical during the ageing.
A strong acceleration effect was observed, with increased Si, agreeing with previous reports. However, a saturation effect was identified, which seems to depend on the ageing temperature. This is discussed as a function of Si-vacancy interaction in the precipitation of Al3Sc. Modelling in a Kampmann-Wagner Numerical framework was performed assuming various numbers of heterogenous nucleation sites. To match experimental results, it was required to increase the diffusion coefficient of Sc in the presence of Si, further highlighting the acceleration effect.
It was identified via TEM and APT that the presence of Si leads to smaller mean radius and larger volume fraction of precipitates, which promote larger increments of the mechanical properties. Furthermore, it was observed that Si replaces Al in the structure of the precipitates and that the concentration of Si in the precipitates increases with the concentration in the solid solution.
Finally, it was observed that Fe can replace Al in the precipitates too. Moreover, in the presence of Fe, Si is found in higher concentrations inside the precipitate than when Fe is virtually absent. However, only a minimal difference is observed in terms of hardening between the alloys with different Fe content and only early in the ageing process. Analytical strengthening calculations seem to predict well the hardening in a Fe-free alloy but poorly in the Fe-rich one. This indirectly suggests that Fe has an effect on the precipitation kinetics, but more investigations are needed to fully understand the effect of Fe on precipitation in these alloys.
Additional informations
-
https://deakin.zoom.us/j/83683315974?pwd=v9dIuNeebiCxC8etah5ItcjBK5q6Ue.1 (Waurn Ponds, Australia)

Sciences & Société
Soutenance de thèse : Louis LESAGE
Thermodynamic and kinetic control of liquid metal dealloying for the design of porous metallic powders
Doctorant : Louis LESAGE
Laboratoire INSA : MATEIS
Ecole doctorale : ED34 Matériaux de Lyon
Metallic powders are becoming increasingly widespread due to their use in additive manufacturing processes and as catalytic materials. In this context, it is appealing to develop processes that enable the formation of open porosities in metallic powders to modify their mechanical properties and increase their specific surface area. We propose using liquid metal dealloying (LMD) to create porous powders with modified microstructures and properties. LMD is a novel technique that involves the selective dissolution of an alloying element from a precursor in a liquid metal solvent. This results in the formation of a continuous ligament structure and open porosity in the dealloyed layer.
By mixing precursor and solvent powders and heating them above the melting temperature of the solvent, we successfully dealloyed FeNi and NiCu precursor powders. This process led to either fully porous or partially porous microstructures featuring core- shell morphologies. To better understand the kinetics of the dealloying process and the resulting microstructure, we developed a diffusion model based on thermodynamic principles and successfully compared it with experimental results obtained from NiCu alloys immersed in liquid Ag. Additionally, we used in situ X-ray diffraction to monitor the phase transformations occurring during the dealloying of FeNi particles by Mg. This combination of experimental and simulation work demonstrates how dealloyed structures are controlled by equilibrium thermodynamics and/or the kinetics of the dealloying reaction. Our results highlight the potential of LMD to design dealloyed powders with tailored dealloyed fractions, ligament sizes, compositions, and microstructures. Finally, we propose using compression tests applied to powders to assess their suitability for applications in cold spray.
Additional informations
-
Amphithéâtre de BU, Lyon 1 (Villeurbanne)

Sciences & Société
Soutenance de thèse : Hugo GIRARD
Characterization of the fiber-matrix interface fracture properties in long fiber composites
Doctorant : Hugo GIRARD
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
Fiber-matrix interface in long fiber composite is a key aspect of global composite mechanical properties since it drives damage initiation and load transfer. Fiber-matrix interface debonding is usually the first type of damage that occurs when the composite is subjected to transverse loading. After initiation, the interface debonding propagates and often kinks into the matrix, leading to further critical defects for the structure. As a result, it is crucial to accurately characterize the fiber-matrix interface in order to prevent or control damage in composites. Going beyond existing experimental methods currently focused on interface shear fracture properties, single-fiber microcomposite tensile sample loaded transversely are developed to simultaneously characterize opening and shear fracture properties. An accurate experimental characterization of the fiber-matrix debonding process allowed the identification of the interface fracture properties using adequate 2D and 3D numerical approaches and related fracture models such as the Coupled Criterion (CC) and Cohesive Zone Models (CZM). Both the CC and the CZM are able to reproduce the experimentally observed debonding process in 2D, the 3D model being able to describe the free surface singularity. In 3D, the fracture property identification yields tensile strengths and critical energy release rates respectively slightly higher and in the same order of magnitude than those identified in 2D. The 3D model does not enable identifying the shear fracture properties, unlike in 2D. In 2D the optimal initiation crack shapes correspond to i) the stress isocontours for small brittleness numbers, ii) the energy-based shapes for large brittleness numbers and iii) neither of them for intermediate brittleness numbers. The 2D stress isocontours-based debonding shapes provide an accurate estimate of the initiation loading. In 3D, the optimum initiation crack always corresponds to energy-based debonding shapes and the 3D stress isocontours-based debonding shapes may thus overestimate the initiation loading by up to 30%.
Additional informations
-
Amphithéâtre Gaston Berger, INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Junxiong WANG
Molecular dynamics simulation of semicrystalline polymers: from molecular topology to mechanical properties
Doctorant : Junxiong WANG
Laboratoire INSA : MateiS
École doctorale : ED34 : Matériaux de Lyon
Semi-crystalline polymers have attracted widespread attention due to their wide range of industrial applications, attractive mechanical properties, and good chemical resistance. Semi-crystalline polymers exhibit excellent mechanical properties due to their unique molecular structure (crystalline and amorphous phases overlapping each other). Topological molecules, like ties, loops, … and entanglements in amorphous phase, serve as stress transmitters and can be crucial to mechanical properties. However, these microstructures cannot be studied quantitatively experimentally, and the nonequilibrium process of crystallization and how the microstructure affects mechanical properties cannot be studied at the nanoscale. The dependence of the mechanical properties of semi-crystalline polymers on topology and entanglement has been explored using a coarse-grained model through molecular dynamics simulations. From cooling a melt, and after isothermal treatment, semi-crystalline polymers with lamellar structures were obtained with different entanglement densities and topologies. The strongest mechanical properties are shown when the tensile direction is highly consistent with the crystal chain orientation. And the system with a higher entanglement density has a smaller yield stress but a significant stress-hardening regime, indicating that high entanglement density effectively increases the stress-hardening effect. Additionally, the effect of different topologies on mechanical properties has been explored. Uniaxial tensile test results show that cilia have little effect on mechanical properties. The yield stress increases with the number of loops, showing that not only the loops but also the number of topologies has a strong influence on the mechanical properties. The tie molecules appear to have a slightly greater impact on the mechanical properties than the loops, manifesting in a slight strain softening effect. These results will enhance the understanding of the relationship between microstructure and mechanical properties of semicrystalline polymers.
Additional informations
-
Amphithéâtre Emilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne

Sciences & Société
Soutenance de thèse : Yohan DOUEST
Development of Ti-based bulk metallic glasses for dental applications through innovative design strategy, process optimisation and surface functionalisation
Doctorant : Yohan DOUEST
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
Due to their long-range disordered atomic structure, Ti-based bulk metallic glasses (BMGs) exhibit at least twice the mechanical strength of crystalline Ti-alloys currently used in dental implant applications. Ti-based BMGs are therefore candidate materials to downsize dental implant components and reduce their invasiveness. Although numerous research works have emphasised their potential, no commercial products have been made available. Several aspects hinder their practical application. Firstly, they generally contain high amount of copper. Apart the controversy regarding its biological safety, copper has been shown to trigger pitting corrosion in chloride environment of amorphous alloys, thereby limiting their corrosion resistance. Secondly, Ti-based BMGs are challenging to process. Because of their restricted glass forming ability (GFA), they are more prone to the formation of crystalline heterogeneities even when high cooling rates are applied.
This PhD investigates independent research areas related to Ti-based BMGs, ranging from designing strategies and processability to surface functionalisation. At first, a machine learning (ML) model is employed to explore compositional spaces with reduced amount of copper within the Ti-Zr-Cu-Pd system. The model’s predictions are experimentally assessed, and a critical discussion is provided on the relevance of the ML-guided approach. Secondly, the processability of Ti40Zr10Cu36Pd14, a representative composition of Ti-based BMGs, is evaluated. Processing techniques from both laboratory and industry are compared, and the resulting as-cast crystalline heterogeneities are studied to give insights into their formation pathways. Lastly, two surface modifications aimed at reducing the influence of copper on the corrosion resistance of Ti40Zr10Cu36Pd14 are proposed. One solution involves the deposition of coating already used in dental implant systems while the second solution consists of a chemical etching treatment. The results obtained within this PhD aim to contribute both scientific and industrial advancements, while also suggesting new research topics.
Additional informations
-
Salle des thèses, Bâtiment Irène Joliot Curie (bât. INL), INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Camille ZOUDE
Formulation, élaboration et caractérisation de géopolymères poreux pour une application de stockage d'énergie
Doctorante : Camille ZOUDE
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
Dans le contexte actuel, marqué par l'importance croissante de la gestion de l'énergie, les systèmes de stockage d'énergie thermochimique se révèlent être prometteurs, notamment ceux combinant un matériau hôte poreux avec des sels hygroscopiques.
Ces systèmes, de haute densité énergétique, reposent sur une réaction renversable : la déshydratation est endothermique et l’hydratation est exothermique. Les géopolymères sont des candidats prometteurs comme matériaux hôtes en raison de leurs propriétés mécaniques, leur facilité de mise en œuvre et leur faible coût. Toutefois, leur porosité nécessite une optimisation pour l’application visée.
À cet effet, trois approches sont étudiées ici : la fabrication additive (Direct Ink Writing), le moussage chimique, et la combinaison des deux. Ces approches nécessitent un important travail de formulation, notamment par l’ajout d’additifs pour adapter leur rhéologie au processus d’extrusion et pour générer une porosité homogène. Sans modifier la cinétique de prise, leur introduction permet la formation d’une porosité contrôlée, atteignant jusqu’à 71 % par moussage chimique. La combinaison de robocasting et de moussage direct plafonne la porosité totale à 65 %, en raison d’une densification des filaments lors de l’extrusion. Les performances mécaniques des échantillons sont évaluées en fonction de leur porosité et des conditions dans lesquelles ils ont été conservés (humidité et température).
L’introduction du sel dans le géopolymère entraîne la formation de composés, par réaction du sodium avec le sel, nuisant aux propriétés thermiques. Cette formation est limitée grâce à l’ajustement du protocole de fabrication. Les propriétés thermiques des composites, évaluées à l’aide de tests dynamiques sur un banc thermique, montrent la capacité des composites à stocker de l’énergie à la fois par sorption physique et chimique. Cependant, des travaux plus approfondis sont nécessaires pour optimiser la répartition du sel et la distribution des diamètres d’accès aux pores dans les géopolymères.
Additional informations
-
Amphithéâtre Gaston Berger, INSA-Lyon (Villeurbanne)

Sciences & Société
Soutenance de thèse : Louis-Marie LEBAS
Development of multiscale liquid phase electron tomography and its application to the study of ultra-sensitive materials
Doctorant : Louis-Marie LEBAS
Laboratoire INSA : MATEIS
École doctorale : ED34 : Matériaux de Lyon
The demand for characterizing a single beam-sensitive sample at the nanoscale is increasing for applications in both materials science and biology.
This study presents a protocol with a software solution that enables precise control over the electron microscope and a custom sample holder, facilitating automated acquisition of fast 3D data from a single object under environmental conditions. This method allows for imaging with a controlled low electron dose and multimodal electron signals. It can be used in environmental scanning or transmission electron microscopes for easy sample preparation and to benefit from high resolution. The software has several key features, including automatic eucentricity adjustment, automatic acquisition with a new drift correction algorithm that eliminates the need for an extra validation step, and focus and astigmatism adjustment assistance.
To demonstrate its effectiveness, the morphology of typical samples such as latex nanoparticles, silica aerogels, and gold nanoparticles is investigated. As an example of a more comprehensive study, a multi-scale test was performed using AlOOH to evaluate its morphological properties at different scales. The Environmental Scanning Electron Microscope (ESEM) was used to monitor the sample in 3D during a dehydration-rehydration cycle and also to evaluate the penetration of gold nanoparticles. The Transmission Electron Microscope (ETEM) provided better resolution and allowed for the quantification of sample porosity down to the nanoscale.
One major achievement of the protocol is that it allows for recording tilt series for electron tomography investigations in STEM mode at multiple scales while using a total electron dose that is an order of magnitude lower than what is accepted in cryo electron tomography. Therefore, this study represents a significant advancement in the analysis of different samples at varying humidity levels. Additionally, it provides a simpler sample preparation process compared to cryo-TEM techniques, while maintaining a similar or even lower radiation dose.
Additional informations
-
Amphithéâtre Émilie du Châtelet (Bibliothèque Marie Curie) - Villeurbanne

Sciences & Société
Soutenance de thèse : Sylvain FOURNIER
Fabrication additive par stéréolithographie de composites céramiques pour application médicale : Du développement de pâtes spécifiques aux compositions et architectures adaptées
Doctorant : Sylvain FOURNIER
Laboratoire INSA : MATEIS
Ecole doctorale : ED34 : Matériaux de Lyon
Les techniques de fabrication additive fondées sur la photopolymérisation sélective de couches successives permettent l’élaboration de pièces céramiques complexes, avec une résolution de quelques dizaines de micromètres. Le procédé de stéréolithographie implique le raclage d’une pâte fortement chargée en particules céramiques, soumise à de grandes contraintes de cisaillement. La photopolymérisation laser entraîne ensuite le durcissement sélectif des parties de la pièce avant l’étalement de la prochaine couche. A la fin du procédé, des traitements thermiques sont appliqués pour supprimer le polymère et consolider l’objet céramique. Cette thèse porte sur l’étude du procédé en vue de son utilisation dans la fabrication d’implants spécifiques, adaptés à chaque cas clinique.
Notre approche associe la caractérisation fine des systèmes « polymère-poudre céramique » afin de diminuer les défauts d’étalement et de polymérisation qui peuvent compromettre les propriétés mécaniques des implants céramiques. Une étude rhéologique comportant des essais de cisaillement continu, oscillatoire et multiaxial nous a permis de rationaliser le comportement des pâtes et de comprendre l’impact de chaque élément de la formulation. L’écoulement du matériau à fort taux de cisaillement est perturbé par la rugosité des particules. La dispersion adéquate des particules permet d’éviter un rhéoépaississement de la pâte. L’ajout d’une vibration lors du raclage permet également de réduire la viscosité. Des mesures du degré de polymérisation par spectroscopie infrarouge ont montré une certaine inhomogénéité due à la fabrication couche par couche, ce qui nécessite un déliantage thermique contrôlé pour limiter la formation de fissures.
Dans un deuxième temps, des poudres composites à base de zircone cériée, présentant une certaine ductilité par transformation de phase, sont utilisées afin de limiter l’impact des défauts d’élaboration. Les composites élaborés présentent une microstructure plus hétérogène que ceux élaborés par pressage, ce qui tend à augmenter leur transformabilité, améliorant finalement la résistance aux défauts d’impression.
Additional informations
-
Bibliothèque universitaire des sciences, Université Lyon 1 (Villeurbanne)