INSA LYON

Towards a safer farming

The use of pesticides appears natural and exclusive to us because our civilization has relied on them since antiquity. Indeed, pest damage results in economic production losses to the agricultural industry, estimated from 28 to 50% (in Africa and Asia) of annual productions. Therefore, the European Union uses approximately 360 million kg of pesticides per year for agricultural and horticultural tasks. However pesticide application methods are inefficient (only 0.3% of sprayed pesticides from aerial application comes in contact with the target pest) and has led to alarming consequences in public health, the environment, and economically.

 

In 2003, environmental and economic costs associated with pesticide use were estimated to total approximately 10 billion dollars per year in the US. In its “Ecophyto” plan, French government has decided to reduce by 50% the use of pesticides by 2018. Unfortunately, alternatives to pesticides being too scarce, the objective has been postponed to 2025. So far, no purely technological and versatile method has been developed to replace pesticides. Detection techniques still do not make use of spectrometry to detect pests (they detect sick plants, so too late). For instance, in 2012, some robots have collaborated with humans in vineyards to decide where to spray with various levels of autonomy. Results showed 90% accuracy of grape cluster detection leading to 30% reduction in the use of pesticides. Some studies introduce ways to detect pests on leaves with a camera, but due to the challenges of on-site detection, most of them relied on scanning under highly controlled light conditions.

Greenshield Project aims at reducing the use of pesticides by developing a robotic module to be embedded on a terrestrial vehicle (mobile robot, farming tractor, ...) to fight against crop pests (invertebrates, diseases, weeds). This module will autonomously detect pests using spectral analysis, and destroy them with a laser. When mounted on mobile robots, it will patrol among crop fields to scan the plants, collect accurate data regarding pests that will serve to optimize the action of robots. This new means of fighting will settle a new sustainable paradigm of pest control to better combat them.

The technical solutions proposed in this project have already been proved to be feasible.  Hence, by way of spectrometry, one can characterize insect species with more than 95% of correct answers, and even 80% of correct answers for subspecies identification. In January 2017, we performed and succeeded a Proof Of Concept (P.O.C.) study validating this method of detection on aphids with a spectrometer off-the-shelf and a simple statistical method (Principal Component Analysis). Concerning the destruction method, its effectiveness has been successfully studied on cockroaches. In 2010, in order to fight malaria, a team showed that it is possible to destroy up to a hundred mosquitoes in flight, at a maximum distance of 30m with a Blu-Ray type laser.

In this project, the method of targeting pests for detection and destruction has been patented by the firm Green Shield Technology which will industrialize the results of this project.

It uses miniature rotating mirrors to orientate the beams very quickly. This method has already been designed for an endoscopic laser in phonosurgery by Femto-ST, one of the participating research laboratories.

(i) Ron Berenstein, Yael Edan, Human-Robot Cooperative Precision Spraying: Collaboration Levels and Optimization Function10th IFAC Symposium on Robot Control, September 5-7, 2012. Dubrovnik, Croatia

 

 

http://www.anr-greenshield.fr/

Visual: 
Laboratoires: 
Dates - Duration: 
10/2017 to 03/2021
Funding Institution: 
Contact: 
arnaud.leleve@insa-lyon.fr
Project Leader: 
INSA LYON - AMPERE
INSA’s scientific leader: 
Arnaud LELEVE
Subtitle: 
Pesticide Free Robotized Pest Control in Agriculture
Funding: 
558000' €'
Keywords: