Évènements

15 Apr
15/04/2024 10:00

Sciences & Société

Soutenance de thèse : Marjolaine GONON

A new approach of lubricant behavior in highly loaded contact

Doctorante : Marjolaine GONON

Laboratoire INSA : LaMCos

Ecole doctorale : ED162 : Mécanique, Energétique, Génie Civil, Acoustique de Lyon

This doctoral research focuses on lubricants behavior in highly loaded lubricated contacts (pressure > 1 GPa), or EHD (elastohydrodynamic) contacts, a vital aspect of engineering and industry. Under such high load, the friction coefficient (= tangential force/normal load) measured in these contacts may display a plateau regime at medium to high sliding velocities of the solid surfaces. It means that the macroscopic average shear stress becomes shear rate independent, associated in the literature to the lubricant Limiting Shear Stress (LSS)]. Previous work provided on molecular dynamic simulations revealed homogeneous and linear lubricant velocity profiles across the lubricant film thickness, even in the friction plateau regime, with no sliding at the walls. This implies that the friction plateau should result from an intrinsic property of the lubricant, reminiscent of the lubricant glass transition scenario. The present study investigates three model fluids: squalane, benzyl benzoate, and glycerol. Those fluids have been characterized in a high- pressure diamond anvil cell and a rheometer, both combined to two Brillouin light scattering spectroscopy set-ups. The results obtained from the new VIPA rig have been compared to those from TFP-1 and the literature. The results from high-pressure experiments have been compared to friction measurements previously conducted on squalane and benzyl benzoate. The study shows a correlation between the glass transition of these fluids and the onset of the friction plateau in EHD contacts. This research advances our understanding on friction in highly loaded lubricated contacts and highlights the importance of considering local dynamics when studying complex fluids under extreme conditions.These insights have the potential to improve lubricant development and to address friction-related challenges in engineering and industry.

Additional informations

  • Amphithéâtre du CNRS (Villeurbanne)

Keywords (tags)