Évènements

27 Apr
27/04/2023 13:30

Sciences & Société

Soutenance de thèse : Jonathan QUIBEL

Mécanismes de corrosion fatigue : du fil d’acier perlitique à la nappe composite d’un pneumatique poids lourd.

Doctorant : Jonathan QUIBEL

Laboratoire INSA : MATEIS
Ecole doctorale : ED34 : Matériaux de Lyon

Dans les pneumatiques poids lourds, la nappe carcasse est un matériau composite dont le rôle principal est de soutenir les contraintes mécaniques issues de la pression de gonflage et de la masse du véhicule. Ce composite est formé d’une gomme (mélange caoutchoutique) et de renforts métalliques composés de fils d’acier perlitique tréfilés assemblés sous forme de câbles. Lors du roulage, la nappe carcasse est sollicitée en flexion cyclique sous tension. De plus, différentes espèces chimiques diffusent dans la gomme jusqu’au renfort métallique. Il peut en résulter un endommagement de corrosion fatigue (ECF) du composite. La démarche liée à la réduction de la consommation de carburant et donc des émissions de gaz à effet de serre peut passer par une diminution de la masse du pneumatique et donc du métal utilisé. Cependant, il est nécessaire de comprendre l’ECF pour garantir les mêmes performances du pneumatique. Pour cela, cette étude est réalisée à deux échelles : le fil de 180 µm de diamètre constitutif du câble et la nappe composite.
A l’échelle du fil, les essais instrumentés de flexion rotative en environnement aqueux contrôlé montrent que l’endommagement est la conséquence d’un amorçage de fissure de fatigue par dissolution et/ou d’une fragilisation par l’hydrogène du métal. Ils montrent également que la durée de vie des fils est conditionnée par la réactivité de surface des fils par rapport aux ions en solution.
Pour la nappe composite, des essais de flexion cyclique sous tension sont réalisés parallèlement à des simulations par éléments finis des câbles gommés (champs des contraintes mécaniques au sein des fils des câbles). En combinant les résultats expérimentaux et numériques, un mécanisme d’endommagement du composite sollicité en fatigue sous environnement est proposé. Le mécanisme montre l’effet synergique entre l’environnement agressif, la sollicitation de fatigue et la géométrie d’assemblage du renfort métallique.

Additional informations

  • Salle de conférence de la bibliothèque universitaire, Université Lyon 1 (Villeurbanne)