
Sciences & Société
Soutenance de thèse : Emmanuel THOULON
Modèle poro-élastique multi-échelle du système tige/fémur pour fabrication additive d'une tige fémorale personnalisable à gradient de propriétés mécaniques
Doctorant : Emmanuel THOULON
Laboratoire INSA : LAMCOS - Laboratoire de Mécanique des Contacts et des Structures
École doctorale : ED n°162 MEGA - Mécanique, Énergétique, Génie Civil, Acoustique
L'arthroplastie totale de la hanche (THA) est en un remplacement complet de l'articulation de la hanche par un implant. Il s'agit du seul traitement disponible pour de nombreuses pathologies de la hanche liées à l'âge. La durée de vie de la prothèse est limitée, nécessitant souvent une nouvelle intervention au bout de plusieurs années. L'augmentation de l'espérance de vie et la baisse de l'âge de première implantation contribuent à l'accroissement du nombre de patients concernés. Le prolongement de la durée de vie des prothèses de hanche constitue un enjeu à la fois économique et sociétal. La principale cause de réintervention est le descellement aseptique, caractérisé par une résorption osseuse à l'interface os implant. Cela entraîne une instabilité de l'implant et est attribué au « bouclier de contrainte » (stress shielding), qui résulte de la différence de raideur entre le titane et l'os. Cela réduit la transmission des contraintes dans l'os et favorise la résorption osseuse liée au désusage. Dans un contexte médical plus large, où les solutions personnalisées sont privilégiées, cette thèse explore le concept de tige fémorale mécano-biofidèle, c'est-à-dire une tige imitant la géométrie et les propriétés mécaniques de l'os naturel. Alors que l'aspect géométrique a déjà été étudié par Braileanu (2020), ce travail se concentre sur la détermination de propriétés mécaniques optimales pour adapter l'implant à chaque patient. Il s'appuie sur les travaux antérieurs de Perrin (2018) et de Coftigniez (2021), qui portaient respectivement sur une modélisation poroélastique de l'os et sur la fabrication additive de supports en titane destinés à la croissance osseuse. L'objectif principal est de créer un modèle poroélastique de l'os incluant la simulation de la cicatrisation et du remodelage, puis de confronter ses résultats à ceux obtenus par fabrication additive. La cicatrisation et le remodelage étant deux processus biologiques distincts, aucun modèle numérique ne les simule simultanément. Deux modèles issus de la littérature ont été sélectionnés et implémentés dans un modèle éléments finis simplifié, axisymétrique, du système tige-fémur à l'aide de subroutines UMAT. Grâce à un document externe et à l'utilisation d'un predefine field, les calculs de remodelage reprennent au dernier pas de calcul de cicatrisation, assurant ainsi la continuité entre les deux processus. Une procédure de validation a été appliquée pour vérifier l'insensibilité au maillage, la justesse des calculs de contraintes et le comportement asymptotique de la raideur avec un nombre croissant de cycles. Pour évaluer la précision du modèle, les résultats de la simulation numérique ont été comparés à ceux de trois patientes scannées respectivement 5 mois, 4 ans et 12 ans après l'implantation. Les résultats préliminaires sont encourageants, avec une même distribution de raideur et des écarts maximaux de 6 %, 24 % et 11 %. Ils mettent en évidence certaines limites, notamment l'approximation géométrique qui réduit la précision dans la zone de la tête fémorale. La surestimation de la raideur dans le modèle de remodelage suggère une sensibilité aux conditions initiales et une possible surestimation inhérente au modèle lui-même. L'utilisation d'images préopératoires offrirait certainement des améliorations pour les futures études. Enfin, une première étude des matériaux a montré que l'introduction de porosité dans le titane permet de diminuer la raideur, de réduire l'effet de bouclier de contrainte et de favoriser la colonisation cellulaire. Un prototype poreux en titane a pu être fabriqué par stéréolithographie, tandis qu'aucune éprouvette en polymère n'a pu être produite en raison de contraintes dimensionnelles imposées par les techniques disponibles. Des recherches complémentaires sur les procédés de mise en forme des polymères seront donc nécessaires. La prochaine étape de ce travail consistera en une caractérisation mécanique et biologique de l'éprouvette en titane.
Additional informations
-
INSA Lyon - Salle René Char, 14 avenue des arts, INSA-Lyon, 69100 Villeurbanne