Évènements

18 déc
18/12/2018 14:00

Sciences & Société

Soutenance de thèse : Maxime CHABERT

Modèles de programmation par contraintes pour le clustering conceptuel : application à un problème de configuration d'ERP

Doctorant : Maxime CHABERT

Laboratoire INSA : LIRIS
Ecole doctorale : EDA512 : InfoMaths

Les ERP (Enterprise Resource Planning) sont incontournables dans les systèmes d'information des sociétés industrielles: ils jouent un rôle crucial pour automatiser et suivre leurs processus afin d'améliorer leur compétitivité. Un ERP est un logiciel générique qui est utilisé par plusieurs sociétés industrielles ayant des besoins et des processus différents. C'est pourquoi de nombreux paramètres permettent d'adapter le fonctionnement du système aux besoins d'une société. Le déploiement d'un ERP, qui vise à paramétrer le système en fonction des besoins collectés, est donc une tâche complexe qui requiert une profonde expertise du système mais aussi du métier de l'entreprise industrielle. Infologic est une société qui développe et installe son propre ERP appelé Copilote. La difficulté liée au déploiement de Copilote dans une société industrielle est un réel frein pour la croissance d'Infologic et réduire la complexité du paramétrage de Copilote est un enjeu vital pour Infologic. C'est pourquoi nous avons étudié le processus de déploiement de Copilote et particulièrement la phase de paramétrage du système. Nous proposons une approche visant à extraire, depuis l'ensemble des paramétrages existants, un catalogue de paramétrages correspondant à des besoins fonctionnels précédemment rencontrés afin de les réutiliser lors des prochains déploiements de Copilote. Nous proposons d’utiliser la programmation par contraintes pour cela, afin de pouvoir facilement personnaliser les solutions calculées en ajoutant des contraintes et des critères d’optimisation variés. Nous introduisons de nouveaux modèles à base de contraintes pour résoudre des problèmes de clustering conceptuel, ainsi qu'une contrainte globale pour le problème de couverture exacte avec plusieurs algorithmes de propagation. Nous montrons qu'elle permet de modéliser facilement des problèmes de clustering conceptuel, et de les résoudre plus efficacement que les approches déclaratives de l’état de l’art.

Informations complémentaires

  • Bâtiment Blaise Pascal, salle 501.337 - avenue Jean Capelle, Villeurbanne.